
HYPOTHESIS AND THEORY
published: 06 August 2015

doi: 10.3389/fnhum.2015.00430

Edited by:
John J. Foxe,

Albert Einstein College of Medicine,
USA

Reviewed by:
Edith V. Sullivan,

Stanford University Medical School,
USA

Christian Sorg,
Klinikum Rechts der Isar Technische

Universität München, Germany

*Correspondence:
Kenneth Hugdahl,

Department of Biological and Medical
Psychology, University of Bergen,
Jonas Lies vei 91, 5009 Bergen,

Norway
hugdahl@uib.no

Received: 05 May 2015
Accepted: 13 July 2015

Published: 06 August 2015

Citation:
Hugdahl K, Raichle ME, Mitra A

and Specht K (2015) On the existence
of a generalized non-specific

task-dependent network.
Front. Hum. Neurosci. 9:430.

doi: 10.3389/fnhum.2015.00430

On the existence of a generalized
non-specific task-dependent
network
Kenneth Hugdahl1,2,3,4*, Marcus E. Raichle5, Anish Mitra5 and Karsten Specht1,6

1 Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway, 2 Division of Psychiatry,
Haukeland University Hospital, Bergen, Norway, 3 Department of Radiology, Haukeland University Hospital, Bergen, Norway,
4 NORMENT Center of Excellence, University of Bergen, Bergen, Norway, 5 Department of Radiology, Washington University
School of Medicine, St. Louis, MI, USA, 6 Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway

In this paper we suggest the existence of a generalized task-related cortical network
that is up-regulated whenever the task to be performed requires the allocation of
generalized non-specific cognitive resources, independent of the specifics of the task
to be performed. We have labeled this general purpose network, the extrinsic mode
network (EMN) as complementary to the default mode network (DMN), such that
the EMN is down-regulated during periods of task-absence, when the DMN is up-
regulated, and vice versa. We conceptualize the EMN as a cortical network for extrinsic
neuronal activity, similar to the DMN as being a cortical network for intrinsic neuronal
activity. The EMN has essentially a fronto-temporo-parietal spatial distribution, including
the inferior and middle frontal gyri, inferior parietal lobule, supplementary motor area,
inferior temporal gyrus. We hypothesize that this network is always active regardless
of the cognitive task being performed. We further suggest that failure of network
up- and down-regulation dynamics may provide neuronal underpinnings for cognitive
impairments seen in many mental disorders, such as, e.g., schizophrenia. We start by
describing a common observation in functional imaging, the close overlap in fronto-
parietal activations in healthy individuals to tasks that denote very different cognitive
processes. We now suggest that this is because the brain utilizes the EMN network
as a generalized response to tasks that exceeds a cognitive demand threshold and/or
requires the processing of novel information. We further discuss how the EMN is related
to the DMN, and how a network for extrinsic activity is related to a network for intrinsic
activity. Finally, we discuss whether the EMN and DMN networks interact in a common
single brain system, rather than being two separate and independent brain systems.

Keywords: extrinsic mode network (EMN), fMRI, cortical networks, connectivity, cognition, problem solving,
default mode network (DMN)

An Incidental Observation – Similar Brain Activations, Different
Cognitive Tasks

The origin of this paper was an incidental observation when preparing for a lecture by one of the
authors (KH), that when comparing brain activation patterns from functional magnetic resonance
imaging (fMRI) data across different studies done in our laboratory at the Bergen fMRI Group,
University of Bergen, Norway over the last 10–15 years, a common pattern of activation emerged
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despite that these studies had used different cognitive stimulus
paradigms and tasks. This is shown in Figure 1.

As can be seen in Figure 1 there is a commonality of
activations that involves the pre-central, middle and inferior
frontal gyri, the intraparietal sulcus and inferior parietal lobule,
the inferior posterior temporal region, occipital cortex. In
addition, these different tasks typically also engage the dorsal
part of the anterior and middle cingulate cortex (ACC) and
the supplementary motor area (SMA) medially (not seen in
Figure 1, but see Figure 5). The activations are seen in both
hemispheres, but are more prominent in the left hemisphere. The
initial reaction when seeing this pattern was that something must
have gone wrong in the collection of data when preparing for the
seminar lecture.

Subjects, Cognitive Functions and Tasks
in the Studies in Figure 1

The subjects in the studies presented in Figure 1 were healthy
adults between 18 and 40 years, with a total of 187 subjects, 117

females, and 70 males. The subject-groups were non-overlapping
between studies, i.e., there were different subjects in all the
studies in Figure 1. The activations were from contrasts for the
“hard condition,” following the terminology used by Duncan
(2013) and Fedorenko et al. (2013), i.e., using the cognitively
most demanding condition when the design involved several
conditions that differed in cognitive load or demands. For
example, the activation pattern shown for the Go/NoGo task
(panel #2 in Figure 1) involved pressing the response key
whenever a red traffic light was presented in the LCD goggles
the subjects wore (Go), and withholding the response whenever a
green traffic light was presented (NoGo), i.e., a “hard condition”
since green always means “go” and red always means “stop” in
everyday life, and the opposite condition will therefore be more
cognitively demanding. Correspondingly, the activation pattern
seen for the Stroop task (panel #3 in Figure 1) was for the
“hard condition” of deciding whether the color of the ink of the
word matched the color seen before, i.e., the “hard condition” of
ignoring the interfering semantic information. The activations in
Figure 1 are for the contrasts between task- processing epochs
when the stimulus was present minus passive, resting epochs

FIGURE 1 | BOLD-functional magnetic resonance imaging (fMRI) activations from nine different cognitive studies by the Bergen fMRI Group (panels
#1–9), with nine different cognitive tasks, visualized on standard SPM templates. There were different subject groups in the nine different studies.
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when the stimulus was absent, except for in the two event-related
designs where activations for stimulus targets were contrasted
against non-targets. Further details about number of subjects,
males, females, age-range, type of MR scanner, analysis software,
experimental design, and p-thresholds are presented in Table 1.

The different cognitive functions and tasks used in the nine
different studies from the Bergen fMRI Group laboratory and
shown in Figure 1 were; Spatial working memory, n-back task
(panel #1), decide if a number presented in one of nine squares
shown in goggles was the same location as the presentation
two numbers back (Lycke et al., 2008). Response inhibition,
Go/NoGo-task (panel #2), traffic-light pole was presented in
the goggles with red or green light, subject had to press a
button whenever the green (or red) light was presented and
withhold the response whenever the red (green) light was
presented (Gundersen et al., 2008). Impulse control, Stroop
color–words task (panel #3), decide the color of the ink of color-
words when there was a conflict with the semantic meaning
of the word, e.g., the word red written in blue ink (Viken,
2007). Executive function, forced-attention dichotic listening task
(panel #4), correctly identify simple speech sounds presented
through headphones in the left ear in a dichotic listening
task, with a conflicting sound simultaneously presented in the
right ear (Falkenberg et al., 2011). Mental rotation, left/right
discrimination task (panel #5), decide if the fingers of two rotated
hands shown in the LCD goggles were of the same or different
hand (Hjelmervik et al., 2015). Cognitive flexibility, Wisconsin
Card Sorting Test (WCST) (panel # 6), find the solution to pre-
set rules for the sorting of cards presented in the goggles (Specht
et al., 2009). Arithmetic task (panel #7), decide if two consecutive
numbers shown in the goggles add up to a pre-specified sum
(Hugdahl et al., 2004). Beliefs about others, Theory of Mind test
(panel #8), infer the reason of an observed action (Specht et al.,
in preparation). Context updating, oddball detection task (panel
#9), press a button whenever heard a tone with a deviating pitch
in a stream of standard tones with the same pitch (Eichele et al.,
2005). All tasks were standard cognitive or neuropsychology tasks
or tests that had been adapted to the MR scanner environment,
with a slight modification of the Stroop task that also had a
working memory component. All tasks had about the same

duration and involved either a motor or a verbal response, with
approximately the same frequency of responses across tasks.

Conjunction Analysis – Areas Jointly
Activated and Deactivated

Although these tasks denote different cognitive processes and
functions; working memory (n-back task), response inhibition
(Go/No-Go task), impulse control (Stroop color–words task),
executive function (dichotic listening task), mental rotation (left–
right, L/R, discrimination task), cognitive flexibility (WCST),
attribution of beliefs to others (Theory of Mind test), mental
arithmetic (addition task), context updating (auditory oddball
task), there is also a commonality across tasks; they all require
allocation of intellectual capacity for correctly responding to the
challenges posed by these tasks.

Conjunction Analysis across the Studies in
Figure 1
To further probe the commonalities of activations across task
and cognitive processes, we performed a conjunction analysis
across studies and data sets. The conjunction analysis was done by
converting the spmT maps from the nine respective studies into
Z-maps that are independent from degrees of freedom. Inclusive
conjunction was estimated as a global conjunction analysis and
thus based on a minimal Z-value statistics and a cumulative
p-value of p < 0.0001 was applied, corresponding to a threshold
for the single studies as the ninth root of 0.0001. The result is seen
in Figure 2 and supports the findings shown in Figure 1 from
observing the different activations across studies when they are
displayed together.

Table 2 shows further details about the jointly activated
areas in the conjunctions analysis, including hemisphere side,
Brodmann area, x,y,z MNI co-ordinates, cluster voxel size, and
threshold z-values. Figure 3 shows statistical probability maps
for % overlap for activated and de-activated areas across the
nine Bergen studies. As can be seen in Figure 3, areas that
are de-activated across the nine studies overlap with areas
being active in the classic default mode network (DMN; Raichle

TABLE 1 | Overview of experimental task used, cognitive process studied, number of subjects, split for males and females, age, type of MR scanner,
analysis software, fMRI design, and p-significance threshold for activated areas, for the nine studies shown in Figure 1.

Task/Test # Subjects (M/F) Age (years) MR scanner Analysis software Design p-threshold

2-back 26 (12/14) 21 -27 GE Signa 3T SPM2 Block 0.001/Uncorr

Go-NoGo 13 (13/0) 24–32 Siemens 1.5T SPM2 Mixed 0.05/FWE

Stroop 16 (8/8) 19–31 GE Signa 3T SPM2 Block 0.05/FDR

Forced-attention DL 40 (20/20) 22–30 GE Signa 3T SPM8 Event-related 0.05/FWE

Left/right discrimination 31 (16/15) 18–28 GE Signa 3T SPM8 Block 0.05/FWE

WCST 14 (14/0) 20–30 Siemens 1.5T SPM2 Block 0.01/FDR

Addition task 12 (7/5) 25–31 Siemens 1.5T SPM2 Block 0.05/FWE

Theory of Mind 20 (20/0) 20-30 GE Signa 3T SPM8 Block 0.05/FWE

Auditory oddball 15 (7/8) 21–28 Siemens 1.5T SPM2 Event-related 0.05/FWE

Sum total 187 (117/70)

FWE, Family Wise Error correction; FDR, False Discovery Rate correction; Uncorr, Uncorrected.
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FIGURE 2 | Resulting joint activations after conjunction analysis of the
nine different studies shown in Figure 1.

et al., 2001), including ventromedial inferior frontal, posterior
cingulate, parietal/precuneus areas. Thus, the probability maps
seen in Figure 3 reveal a negative relationship between the
suggested generalized task-driven network and the DMN, such
that activated and deactivated areas have non-overlapping spatial
distributions.

Activation Similarities to Tasks Which are
Conceptually Unrelated

A further example of the similarities in activation between
tasks denoting apparent different cognitive processes is seen
in Figure 4 where the activation pattern for the left–right
discrimination/mental rotation study (Hjelmervik et al., 2015)
and shown in the mid-field panel (#5) in Figure 1 is compared

TABLE 2 | The table lists the anatomical structures, corresponding
Brodmann areas (BA), peak voxel coordinates (MNI-space),
corresponding Z-value of the most significant voxel within the cluster, as
well as cluster size in number of voxel (2 mm × 2 mm × 2 mm).

Side Anatomy BA x y z Z(Conj) Cluster
size

Left PCG, MFG, IFG 6, 44, 46, 47 –48 6 50 10,3 1999

Right PCG, MFG, IFG 6, 44, 46, 47 48 32 36 10,0 3850

Left IPL 7, 40 –30 –52 48 9,5 1519

Right AG, MOG 19, 40 34 –72 30 8,5 880

Left MOG 19 –26 –70 26 8,1 227

Left SMA 32 –2 16 48 8,0 1220

Right MFG 46 40 52 14 7,3 98

Left ITG 37 –44 –52 –8 7,3 316

Left MFG 46 –40 32 34 7,3 209

Right PreCu 7 10 –68 50 7,3 154

Right Thalamus 12 –10 2 7,0 556

Left Caudate Nucleus –10 –6 16 6,8 1154

Right ITG 20 50 –48 –16 5,9 104

Left MFG 46 –30 54 16 5,6 234

Right MFG 10 32 54 0 5,2 24

Right Hippocampus 26 –30 2 5,2 29

PCG, PreCentral Gyrus; MFG, Middle Frontal Gyrus; IFG, Inferior Frontal Gyrus;
IPL, Inferior Parietal Lobe; AG, Angular Gyrus; MOG, Middle Occipital Gyrus; SMA,
Supplementary Motor Area; ITG, Inferior Temporal Gyrus; PreCu, Precuneus.

with the activation pattern obtained for logical deductive
reasoning, and taken from Figure 1A from Goel (2007); originally
from Goel (2003). The Goel (2007) article reviewed a series of
imaging studies all concerned with activations to various aspects
of logical reasoning, by exposing the subjects to various syllogistic
and deductive reasoning tasks of the type “if p then q, p; therefore
q” (see also Goel and Dolan, 2003; Prado and Noveck, 2007).
It is apparent from Figure 4 that the activations reported by
Goel (2007) cannot be unique for logical reasoning, but are
shared across tasks, since the extent and spatial distribution of the
activations reported for a logical reasoning task for all practical
purposes is identical to the activations that were reported by
Hjelmervik et al. (2015) using a mental rotation/visual imagery
task. This creates a challenge for imaging theory since a task
requiring syllogistic reasoning is conceptually non-overlapping
with a task that requires mental imagery and rotation of 3D
objects.

Extrinsic Mode Network (EMN) – A New
Hypothesis

Instead the results from the nine studies in Figure 1, the
conjunction analysis seen in Figures 2 and 3, and the close
comparison of the two activation patterns seen in Figure 4 below
all point to the existence of a general cortical activation network
that is shared across cognitive tasks, themes and domains. We
have called this network a general purpose extrinsic mode network
(EMN). The EMN is similar to what Hugdahl et al. (2012) labeled
the “effort mode network” when describing a common activation
pattern across different cognitive tasks and paradigms. We have,
however, chosen to re-label the EMN as the EMN since it avoids
any association with mental effort and task difficulty, which is not
what the EMN is suggested to reflect.

A first impression of the activation patterns seen in
Figures 1–3 is how different cognitive tasks and stimuli could
produce such overlap in activations, that the tasks produced
similar overall neuronal networks independent of the cognitive
process that was induced. However, if the activation patterns
shown in Figures 1–3 are not unique for the cognitive processes
that were explored in the first place in the respective studies,
but rather reflect an underlying commonality of a generalized
network that responds to the allocation of non-specific cognitive
resources, independent of the specific nature of the task then
there was nothing wrong with the activations seen in Figure 1.

The notion of the EMN extends the concept by Duncan
(2013) who proposed a multiple demand system (MD), and
which he suggested is a common activation network across
cognitive tasks and dimensions (see also Fedorenko et al., 2013;
Cole et al., 2014). Other suggestions have been fronto-parietal
control system (Vincent et al., 2007), superordinate cognitive
control network (Niendam et al., 2012), task-related network
(Fox et al., 2005a, 2009), task control network (Dosenbach
et al., 2007), or dorsal and ventral attention systems (Fox et al.,
2006), task-general network (Cole et al., 2014). We suggest the
EMN as an umbrella term for all these networks that share a
common activation pattern structure, and being up-regulated
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FIGURE 3 | The figure displays the probability maps for significant
activations and deactivations across the nine studies shown in
Figure 1. Each study was binarized at a threshold of p < 0.001 and
voxel-wise summed up. Thus, the displayed voxels reflect the probability

(in %) that they were found to be activated (red) or deactivated (blue) by
the nine studies shown in Figure 1. The red areas mainly reflect the
EMN (see also Figure 2), while the blue areas correspond to the core
areas of the DMN.

FIGURE 4 | Comparison of BOLD-fMRI activation patterns for Bergen
Mental rotation task, and a logical deduction task (from Goel, 2007,
Figure 1A). Reprinted with permission from the Publisher.

during task processing, but independent of the specific cognitive
task-structure.

The Underlying Mechanisms – Is
Attention Special?

Figure 5 shows the activations rendered on a standard SPM
template for five of the seven tasks from Figure 2 in Duncan
(2013) and corresponding activations from five selected tasks
from the Bergen studies (panels #1,2,3,5,6, in Figure 1), Again,
the similarities in the overall pattern of activation seen in Figure 5
between the two sets of tasks from the Duncan (2013) article and

the Bergen studies is striking considering that almost everything
that one could conceive of being different between the two
studies, also is different, including, tasks, and when cognitive
processes overlap, task-specific parameters nevertheless differ,
subjects, MR scanners, analysis software and statistics, etc. The
fact that the resulting activation patterns for the two set of tasks is
almost identical even from a simple ocular inspection, despite the
between-comparison “noise” in the data, speaks to the robustness
of the EMN.

Duncan (2013) restricted, however, the significance of the
MD to be specifically responsive to fluctuations of attention
episodes and epochs across time. Similarly, Fox et al. (2005a,
2009) suggested that the task-positive activations they observed
when studying the DMN were related to attention and goal-
directed behavior as a general principle of cognitive functioning.
The EMN shares properties with what Fox et al. (2005a)
discussed as goal-directed task network which govern much
of our existence, i.e., a task-positive network consisting of the
dorsal attention network along with a constellation of areas
that have included a fronto-parietal control network and a
salience network. As argued above, however, these different
networks are not unique from a cognitive point of view since
they overlap despite being elicited by different stimuli and
situations. Duncan (2013) referred to the MD system as reflecting
“attentional episodes” which could be understood as the floating
of attention from one focus to another across time, as a kind
of glue that makes us aware of aspects of the surrounding
reality.

Focused Awareness and the EMN
We prefer another term for underlying mechanisms, namely
episodes of extrinsically directed “focused awareness” because
it does not require the specification of an additional term,
attention, as an operationalization for the same underlying
neuronal processes. In that sense, the EMN is like what
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FIGURE 5 | Comparison of activation patterns between five of the tasks shown in Figure 2 in Duncan (2013). Reprinted with permission from the
Publisher, and selected five tasks from the Bergen series of studies shown in Figure 1 of the current paper.

Norman and Shallice (1980) labeled a “supervisory attentional
system,” as a superordinate system that would activate other
cognitive systems and processes under appropriate conditions.
The supervisory attention system would activate subordinate
cognitive schemas with different probabilities depending on
the impending cognitive context, and would apply general
cognitive strategies for monitoring and supervising appropriate
actions. The supervisory attention system resembles aspects
of the EMN. The system proposed by Norman and Shallice
(1980) is, however, a purely cognitive system, with no specific
reference to the underlying neuronal architecture. It moreover
puts attention at the core of cognitive activity for allocating
the necessary cognitive resources for appropriate action. As
we have argued above, attention cannot be at the core of
such strategic planning and executive functioning (cf. Duncan,
2013), and we therefore suggests that the EMN transcends
attention, which instead is seen as a subordinate cognitive
process that is guided by the EMN, not the other way
around.

The EMN is also similar in spatial anatomy to what Corbetta
et al. (2008) called the dorsal attention and cognitive control
networks, which are activations that show spatial coherence
across time between a seed region of interest and other brain
areas (see also Biswal et al., 1995; Greicius et al., 2003;
Raichle, 2010). This network has been shown in task-related
fMRI studies (Corbetta et al., 2008), and as patterns of spatial
connectivity obtained during resting state conditions which are
observed during periods of absence of sensory stimuli and
active task-processing (cf. also Zhang et al., 2008; Smith et al.,
2009). Further, Corbetta et al. (2008) in addition also defined
a ventral attention network, important for interrupting the

dorsal network and thus reorienting attentional focus. This
mainly right-lateralized network anatomically overlaps with
the more bilateral dorsal attention network within the right
middle frontal gyrus, and has been observed also in both task
related fMRI and resting-state fMRI. Due to their presence
also at rest, these additional networks are therefore part of
the brain’s intrinsic activity, i.e., the DMN (Raichle, 2010,
2015a).

Intrinsic and Extrinsic Brain Activity
With intrinsic activity we mean a marker of the brain’s ongoing
activity in the absence of a specific task or stimulus, i.e.,
a marker of non-specific neuronal activity (cf. Cole et al.,
2014). Interestingly, the dorsal attention network and the brain’s
DMN seem to broadly act in an anti-correlated way (but see
also Popa et al., 2009; Foster et al., 2015), while the ventral
network acts independently and is suppressed during episodes of
focused attention. As illustrated above, the EMN is active under
all conditions where participants are asked to take initiative,
like responding to a certain stimulus, selecting an appropriate
stimulus among distractors, or process novel information, but
the activation of the EMN appears to be independent from
the actual content of the stimulus and the stimulus modality.
The EMN is therefore a marker of the brain’s extrinsic activity.
Moreover, activations that depend on stimulus content and
stimulus modality are particularly seen outside of the EMN.
For example, tasks involving spatial processing often show
increased activity in areas, adjacent to the EMN within the right
prefrontal cortex, while verbal stimulus material activates in
particular left prefrontal areas (cf. Lie et al., 2006; Lycke et al.,
2008).
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The EMN is not Just Response to Task
Difficulty

A question remains, namely whether task difficulty modulates
the EMN in terms of activation strength or areas involved.
Looking again across the different studies (Figure 1), the pattern
appears to be quite stable, irrespective of variations in task
difficulty and mental effort involved in the different studies.
Thus, the EMN should not simply be responding to increased
task difficulty, which moreover should be task-specific, while the
EMN is task non-specific. Further, the EMN broadly overlaps
with the network for intrinsic alertness, which is the most
basic level of attention (Sturm et al., 1999), indicating that it
is active also at a very basic level, which may indicate that
it is always activated when a possible response is required or
expected. Unpublished data from Specht et al. (2009) support
this notion by showing that already presenting an instruction to
the subject creates an activation pattern that shares a remarkable
similarity with the EMN. However, at the other end of the
spectrum of task complexity, Lie et al. (2006) and Specht et al.
(2009) explored the neuronal correlates of a task that requires
cognitive processes like parallel processing of several stimulus
features, working memory, hypothesis generation, and response
adaptation. Although the intensity of the EMN activity varied
to a certain degree with tasks demands, the overall pattern of
the EMN remained remarkably constant in the two studies. The
comparison between Lie et al. (2006) and Specht et al. (2009)
studies reiterate the described observation that the activation
within the left prefrontal cortex is mainly stimulus dependent,
while the activation of the right prefrontal cortex, as part of the
EMN, is not.

Non-Specific Cognitive Resources and Net
Balance of Extrinsic to Intrinsic Activity
A common characteristic across all tasks reviewed so far is
that they require allocation of non-specific cognitive resources,
irrespective of whether this is for solving cognitive conflict,
resolve a difficult perceptual task, store items in the working
memory buffer, repeatedly shift attention focus, attain goal
settings, set up cognitive plans or processing strategies, etc. In
this respect, the EMN and DMN modes would act as neuronal
correlates of what Kahneman (2011) called the “fast” and “slow”
modes of thinking, with a fast mode of thinking being automatic,
overlearned, and non-reflective, and corresponding with the
DMN, while a slow mode of thinking is corresponding to the
EMN network.

A way of conceptualizing the relationship between the EMN
and DMN would be to think of the EMN as an extrinsic mode
network, and the DMN as an intrinsic mode network, and that
the activation recorded at any point in time correspondingly
reflects the net balance of extrinsic to intrinsic activity across
time. All the instances listed above could collectively be labeled
higher cognition, and they have a common feature that cannot
be successfully managed without the allocation of non-specific
cognitive resources. Thus, we suggest that the activation network,
the EMN, or MD system in Duncan’s (2013) terminology, which
is associated with all these tasks and processes, correspondingly

reflects allocation of non-specific cognitive resources at the
neuronal systems and circuitry level of explanation.

The Operational Nature of Cognitive
Processes and Functions

Even if it is accepted that the human brain up-regulates a
cortical network that contains nodes, or regions, mainly in the
frontal and parietal lobes that connect during task processing
to constitute a network (Fox et al., 2005a, 2009; Vincent et al.,
2007; Niendam et al., 2012; Duncan, 2013; Fedorenko et al., 2013;
Cole et al., 2014), what is not clear is, however, the nature of the
cognitive tasks that elicit this network. It has previously been
suggested that, besides basic aspects of attention like intrinsic
alertness (Sturm et al., 1999), it responds to executive control,
focused attention, goal maintenance, strategy selection, and
performance monitoring (Fedorenko et al., 2013), attentional
episodes (Duncan, 2013), and response conflict, novelty, and
overcoming a pre-potent response tendency, working memory,
perceptual difficulty (Duncan and Owen, 2000). A problem
with conceptualizing cognitive processes is that they are mainly
defined operationally, where the underlying conceptual identity
is not known. For example, the name “executive” is just a
metaphor taken into neuropsychology from the business world,
denoting a process like the executive director who sits at the
top of the organization hierarchy and controls the planning
and decisions of the company. Similarly, the term “working” in
working memory is a metaphor for the part of memory which
is active, i.e., “working” at any given time. The point we would
like to make is not that these metaphors necessarily are wrong
but that they do not have clear definitions and identification of
the underlying cognitive processes that they denote, and which
goes beyond the operational level of explanation. In this context,
the term “executive” lacks substance and should probably be
replaced by terms that are more easily operationally defined.
Therefore, the existence of a common task-related network
across cognitive domains and processes, which are processes that
at best are only operationally defined, should not come as an
unreasonable suggestion. In the absence of knowledge of what
the core underlying mechanisms are for cognitive tasks such
as; executive, working memory, attention, cognitive control,
perceptual difficulty, goal planning, decision making, etc., we
now suggest that a common denominator for these tasks is that
they all require the allocation of task non-specific cognitive
resources and extrinsically directed behavior, which mainly
engages frontal and parietal areas, primarily on the lateral surface
of the brain, and being right lateralized in the prefrontal cortex
and bilateral in the parietal lobe.

Task-Characteristics of the EMN

There are some notable characteristics of the EMN, aside the
commonalities in frontal and parietal activations across tasks
and processes (see Figure 1). One characteristic is the apparent
asymmetry between the hemispheres, with the right prefrontal

Frontiers in Human Neuroscience | www.frontiersin.org 7 August 2015 | Volume 9 | Article 430

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Hugdahl et al. The extrinsic mode network

cortex activation typically showing a quartet of nodes, with three
nodes along the precentral sulcus, and a fourth node located
anterior to the central sulcus and the frontal eye fields. The
most superior activation of this quartet is typically seen close to
the frontal eye field. Inferior to it, a second activation occurs,
typically seen at the intersection of the middle and inferior frontal
gyrus, and the most inferior activation is within the ventro-
lateral prefrontal cortex. The fourth activation is typically seen
more anterior, within the middle frontal gyrus. These four nodes
occur independently of the task and appear as a general network.
In contrast, the left hemisphere demonstrates a task dependent
variability in activations, as described above. Thus, different levels
of asymmetry emerge within the prefrontal cortex, depending on
the task demands and the content of the task.

Absence of Verbal Tasks – Is Language
Special?

Another characteristic is that the tasks that so far have been
shown to elicit the EMN, and shared with the tasks used in the
studies by Duncan and Owen (2000) and Fedorenko et al. (2013)
are primarily visual non-language tasks. This was also noted by
Fedorenko et al. (2013), who observed that the regions implicated
in a corresponding EMN-like network are mainly driven by
visuo-spatial tasks rather than by language-tasks, and that level
of difficulty in solving the task does not apply to the typical
language networks. Moreover, the EMN appears to surround
language related areas (Duncan, 2013) and does not overlap
with them; particularly it does not overlap in the left prefrontal
cortex. Further support for this comes from a meta-analysis
by Indefrey and Levelt (2004), who explored areas for word
production and found areas, mainly covering left frontal areas
but spare a couple of core areas of the EMN within the right
frontal and parietal lobe. This observation is an another evidence
that overlearned tasks – and language clearly is overlearned and
seemingly effortless – do not activate EMN, with the possible
exception of an unfamiliar, second language.

We havemade the same observation in the Bergen studies, also
seen in the tasks that we have data from, and shown in Figure 1
and Table 1. Of these tasks, seven were visual, while two were
auditory tasks task (Eichele et al., 2005; Falkenberg et al., 2011).
The task used by Falkenberg et al. (2011) was also a verbal task,
and it may be worthwhile noticing that this task is the only one
of the nine tasks listed in Table 1 that activated the posterior
temporal lobe, particularly on the left side, in the vicinity of
the peri-Sylvian region, and overlapping with both the primary
auditory cortex and the language areas. The same areas have
previously been implicated in speech perception and auditory
processing (Binder and Price, 2001; van den Noort et al., 2008;
Price, 2012; Specht, 2014). An exception to the non-language
aspect of the EMN would be the Stroop task, which is also
a verbal task. However, the condition that elicits the EMN is
where the subject is instructed to report the ink-color the word
is written in, suppressing the language/semantic aspects of the
stimulus. As mentioned above, the EMN is typically observed
in visual tasks, and less frequently in language tasks, which may

indicate that language is overlearned in general. However, the
reason that EMN is observed in the Stroop task arises from
the inhibition of an overlearned response tendency to process
the semantic component of the incongruent color–words (Brass
et al., 2005), which requires a certain degree of non-specific
cognitive resources and thus trigger the EMN.

Task-Novelty and Cognitive Challenges

The tasks used in the nine Bergen studies shown in Figure 1 all
require the solution to a novel challenge where the subject has to
provide an answer, which could be right or wrong. Examples from
Figure 1 of such tasks are; Stroop, n-back Working memory,
Go/NoGo, Left/Right confusion, andmental rotation, WCST test.
In all these instances, the subject has to go through a series of
mental operations in order to provide a solution to the challenge
or problem exposed to him/her, and in such instances the EMN is
up-regulated to provide the background resources necessary for
being able to solve the task. The specifics of each task will then
require resource allocation, such as searching the mental lexicon,
perceptual transformations in 3D space, attentional filtering,
stimulus inhibition, and suppression, etc. Each of these sub-
processes will require additional cognitive resources, which will
have their neuronal footprints, but they all share a common
cognitive and neuronal infrastructure of non-specificity in order
to solve the task, and provide a correct answer. Other terms that
would fit the notion of a task non-specific EMN in order to
meet requirements for task solving would be mental flexibility
and cognitive plasticity (cf. e.g., Blumstein and Amso, 2013). An
additional characteristic of the EMN is that it should be sensitive
to experience and learning, which by definition also reduces
novelty. In this sense, the EMN is hypothesized as a dynamic,
and not static, network that may show individual differences in
core EMN activations between individuals to the same tasks,
depending on the amount of previous experiences, and thus
reduction of novelty. Using again the picture by Kahneman
(2011), learning would imply a gradual shift from a “slow” to
a “fast” mode of thinking and thus from EMN to DMN. In
turn, inhibition of (over-)learned actions through adaptation
of responses to a novel situation would cause a rebound to
the “slow” mode of thinking, indicating a higher level of non-
specific cognitive demands, and thus increasing the probability
of activation of the EMN network.

Different Cognitive Tasks, Similar
Activations – Not a New Idea

The idea that different cognitive tasks and processes engage
the same or similar neuronal regions is not new. This was
to our knowledge originally suggested by Duncan and Owen
(2000) and these authors seemed surprised by their observation;
“The results show a striking regularity: for many demands, there
is a similar recruitment of mid-dorsolateral, midventrolateral
and dorsal ACC. Much of the remainder of frontal cortex,
including most of the medial and orbital surfaces, is largely
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insensitive to these demands.”(p. 475). A somewhat similar idea
was expressed by Køhler et al. (1998) who suggested the existence
of domain-specific vs. domain-general brain structures involved
in semantic memory, see also Cabeza and Nyberg (2000) and
the need for generalized brain structures in order to handle
requirements for mental flexibility. Perhaps as a consequence of
the ruling Zeitgeist at the time, Duncan and Owen (2000) only
considered that their observations showed evidence for regional
specialization of function within the prefrontal cortex, i.e., that
the activation across tasks and processes was region-specific, and
not part of a network. The network idea was, however, present
13 years later in the paper by Duncan (2013; see also Duncan,
2010) where he suggested that the activation regularities across
tasks constituted a multiple-demand (MD) system that has all
the qualities and characteristics of a cortical network; “Taken
together, these data show tightly localized MD activity, varying
in exact pattern from one person to another but with a highly
consistent overall topography in frontal and parietal cortex.” (p.
37). Similarly, Fedorenko et al. (2013) writes; Comprising this
network are regions on the dorsolateral surface of the frontal lobes
(along the inferior frontal sulcus/middle frontal gyrus), parts of
the insular cortex, regions along the precentral gyrus, preSMA,
and SMA), parts of the anterior/mid cingulate, and regions in and
around the intraparietal sulcus. We will refer to these regions as the
MD system (p.16616).

Comparison with the Fedorenko et al.
(2013) Study

We have taken Figure 6 from Fedorenko et al. (2013), which
shows the averaged activation across the seven different cognitive
tasks they used (cf. also Duncan, 2013), and displayed it together
with one of the Bergen studies (Stroop n-back task; data
from Griffiths et al., 2013), visualizing both lateral and medial
activations. Fedorenko et al. (2013) compared activation patterns
for seven different tasks that included semantic memory, number
arithmetic, spatial and verbal working memory, Stroop task, and
two multisource interference tasks, that required inhibiting one
source of stimuli in order to process another source.

The similarities in Figure 6 are again both striking and
remarkable considering the range of cognitive processes included
in the studies in the comparison. Fedorenko et al. (2013) made
the argument that previous group-analyses which have shown
commonalities of activation across tasks may have overestimated
their case because of inter-individual variability in brain anatomy,
which could result in overlapping activations at the group level
despite that individual activations are different. This argument
could, however, be discussed since activation data typically are
normalized to a standard template before visualization in order to
avoid the kind of confounding that Fedorenko et al. (2013) warn
against. What they did not comment on, however, is that running
the same subjects on different tasks, likewise may overestimate
overlapping activations, because these same subjects may be non-
representative for the population at large, a potential problem
that will increase in strength with decreasing sample sizes. Since
Fedorenko et al. (2013) based their critical analyses on only

FIGURE 6 | Comparison of BOLD-fMRI for the Bergen Stroop task
(panel #5 in Figure 1), and the average activation shown for the seven
cognitive tasks used by Fedorenko et al. (2013) Figure 2. Reprinted with
permission from the Publisher.

12 subjects this problem is not trivial. A solution would be to
have different subjects run on different tasks, and then look
for commonalities in the activation patterns. This was done
in the studies shown in Figure 1, with 187 subjects in total.
It is therefore interesting to note the close overlap between
the activation patterns shown in Figure 1 and the aggregate
activation pattern shown by Fedorenko et al. (2013, see Figure 6).

Intrinsic vs. Extrinsic Activity, and the
DMN and EMN Networks

Ever since the discovery of the DMN by Raichle et al. (2001;
see also Shulman et al., 1997; and recently reviewed by Raichle,
2015a,b), it has been assumed that the brain, in the absence
of any external stimuli or instruction, has a unique activation
architecture, whereas external stimuli or instructions will drive
task-specific activations which are anti-correlated with the DMN
(Fox et al., 2005a, 2009). The DMN is often described as the
“resting-state” network although that may not be an appropriate
description since the DMN is only one of many identified cortical
networks during resting (Smith et al., 2009). The term “default
mode” is better seen as a name for the brain’s default, or base-
line state under certain conditions, and the DMN has also been
described as the default mode of intrinsic neuronal activity (Fox
et al., 2007; Raichle, 2010, 2015a,b). We now suggest that the
EMN acts like base-line activation during states of active task-
related processing and further suggest that the EMN represents
a basic network for extrinsic neuronal activity. With extrinsic
neuronal activity wemean the brain’s activity to specific stimuli or
tasks, in contrast to intrinsic neuronal activity which is the brain’s
activity in the absence of specific stimuli or tasks.

While the existence of the intrinsic DMN is empirically
corroborated through the work of Raichle and colleagues (see
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Raichle et al., 2001; see also Binder, 2012 and Buckner, 2012
for the history of a resting-state network), the EMN is predicted
to exist for the reasons given in the beginning of this article.
Empirical evidence for the existence of anti-correlated task-
negative and task-positive networks have primarily come from
the studies by Fox et al. (2005a, 2009), but also from others.
These studies should, however, be considered as empirical
confirmations under standard resting state conditions, since
the data for the analyses have been obtained during resting
state conditions, using seed-voxel correlational approaches. We
now suggest that the DMN and EMN show a similar inverse
relationship, obtained under both task-absence and task-presence
conditions, and not attributable to global signal fluctuations
during resting state (task absence) conditions (cf. Fox et al., 2009).

Network Generality vs. Specificity –
Where are the Limits?

An issue not discussed so far is the question of generality versus
specificity of a network for extrinsic activity, i.e., the EMN. The
generality issue relates to how similar the network is across tasks,
and the specificity issue relates to how the network is modulated
by the specifics of the task, and the underlying idiosyncratic
cognitive processes. A network consists of nodes and edges, thus
contrary to the general mythology in the imaging community,
a network approach does not replace a so called “blobology”
approach, it just connects the “blobs,” which in graph theory
terminology are called nodes, or vertices. Nodes are connected
through edges, or arcs, and together nodes and edges are the
elements of a network. Nodes can be of two different types,
satellites and hubs, where hubs are strongly connected nodes,
and satellites are correspondingly weakly connected nodes. The
strength of connectivity in a network is measured as the degree,
which for undirected edges is the sum of all edges connecting to
the node, and for directed edges is the sum of all weights attached
to the edges connecting to a node. An important parameter
for a graph-theoretic description of a network is the shortest
path length, which describes the minimal number of nodes
one has to pass for moving from one part of the network to
another, also known as the distance matrix. In general, the graph
theory provides a broad range of various measures for describing
the inherent complexity of a network structure, its information
flow, and its capability to compensate perturbations (Sporns,
2012).

Without going much into details on the different parameters,
we suggest that EMN-hubs in the frontal and parietal lobes are
invariant and task non-specific, while shortest path length and
degree of connectivity between activations are task variant and
may change depending on the specifics of the task, like stimulus
content or task demands. In other words, although the overall
hub structure of the EMNwill be the same for a working memory
and mental rotation task, the graph-theoretic description of the
network may vary. Although there is an emerging interesting in
descriptions of network complexity and connectivity patterns of
resting state networks (Friston et al., 2014), like the connectome
(Sporns et al., 2005 ), there is, however, to our knowledge, no

in depth graph-theoretic description of the network, underlying
the EMN.

EMN Network Nodes and Hubs

We would like to make the argument that the EMN nodes
are areas not necessarily shared by all tasks, while the hubs
are activated areas that are shared for all tasks requiring above
threshold allocation of non-specific cognitive resources. In the
studies reviewed so far we suggest that key hubs in the EMN are
the SMA, pre-central sulcus, inferior frontal gyrus and the insula,
and inferior parietal lobule. The dynamics of the EMN would
also mean that the peak amplitude and/or area extension of the
“blobs” will vary across tasks, although not affecting the overall
architecture of the whole network (c.f. Lie et al., 2006). In this
sense, a EMN analysis approach can accommodate both network
generality and network specificity as discussed above.

EMN and DMN Activation Loci

The DMN (Shulman et al., 1997; Raichle et al., 2001;
Buckner et al., 2008; Raichle, 2010) is an activation network
observed during periods of non-task activity, i.e., during
periods of cognitive non-effort, sometimes called periods of
“mind-wandering” (Christoff et al., 2009; Smallwood et al.,
2013, but see however, Raichle, 2015b). The DMN has an
activation configuration that includes the medial temporal lobe,
ventromedial frontal lobe, posterior cingulate cortex, precuneus,
and lateral inferior parietal lobule, i.e., a different configuration
than the EMN. The differences in activation foci between the
two networks can be summarized such that the DMN shows
activations toward medial and posterior regions, while the EMN
shows activations toward lateral and anterior regions, but also
with overlapping activations in frontal and parietal areas (Eichele
et al., 2008; Løberg et al., 2012; Nygård et al., 2012).

Network Dynamics and Interactions –
Implications for Mental Disorders

Manoliu et al. (2014) found aberrant regulations of the DMN in
schizophrenia and what they called a central executive network
during episodes of resting state with no demands for task-
processing. Aberrant DMN activation in schizophrenia has been
found in several other studies and could be seen as an established
consensus in the field (e.g., Williamson, 2007; Mannell et al.,
2010; Rotarska-Jagiela et al., 2010; Nygård et al., 2012; Razavi
et al., 2013; Baker et al., 2014). In addition, van Lutterveld
et al. (2014) found increased DMN activation in key brain areas
in non-psychotic individuals that are prone for experiencing
hallucinations, pointing to aberrant DMN activation may be a
trait property for hallucinatory experiences. This is an interesting
finding considering that other studies have repeatedly observed
similar results in hallucinating psychotic patients (e.g., Jardri
et al., 2013; see also Aleman and Vercammen, 2012 for review
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of functional connectivity and hallucinations). Of particular
interest for the current study is the hypothesis put forward by
Northoff and Qin (2011) that hallucinations in schizophrenia
may be a special condition caused by aberrant resting state
activation in these patients, in their own words; “...based on
recent findings, we therefore developed what we call the ‘resting
state hypotheses’ of AVH. Our hypothesis suggest that AVH may
be traced back to abnormally elevated resting state activity in
auditory cortex itself, abnormal modulation of the auditory cortex
by anterior cortical midline regions as part of the DMN, and
neural confusion between auditory cortical resting state changes
and stimulus-induced activity.” (p. 202). Hugdahl et al. (2009a,b)
suggested that the cognitive impairment and hypo-activation
seen in, e.g., schizophrenia patients when exposed to challenging
cognitive tasks could be caused by failure of interactive regulation
of the DMN and EMN networks, rather than a deficit with
regard to a specific brain region. Hugdahl et al. (2009a) wrote
that; “it is proposed that cognitive impairments in schizophrenia,
including inhibitory control of hallucinations..., may involve failure
of down-regulation of a resting-state network and corresponding
up-regulation of an effort network, thus upsetting the normal
functioning of cognitive control mechanisms.” (p.40). They further
continued; “a generalized effort network would be activated
whenever demands for recruitment of higher-order cognitive
functions, like attention, working memory and executive, or
control functions, are called for and would show activations in
prefrontal cortex, anterior cingulate, and inferior parietal cortex.
A generalized effort network would be activated orthogonal to
the default mode or resting state network as suggested by Fox
and Raichle (2007).” (p. 41). A network dynamics perspective
would also be valid for understanding of other mental disorders,
such as bipolar disorder, where the switching between hyper-
and hypo-activated mood states is a core symptom, and where
the underlying neuronal mechanisms are not known. Aberrant
resting state activation was observed in bipolar disorder by
Calhoun et al. (2012) who found that bipolar patients showed
different resting state activation than schizophrenia patients. This
activity was, however, not compared to task-processing activation
in the two groups, thus, whether schizophrenia and bipolar
disorders differ in network dynamics in a more general sense is
not known. Kindler et al. (2015) argued that in order for any goal-
directed activity to be up-regulated, default mode activity has to
be terminated, and that schizophrenia patients show increased
sustained activation in the posterior parts of the DMN. This
is similar to the observation of differences in onset and offset
transients, respectively, reported in the earlier work by Raichle
and colleagues (e.g., Lustig et al., 2003; Fox et al., 2005b), which
would consequently suggest interference with the up-regulation
of the EMN.

Up- and Down-Regulation Dynamics

We have so far conceptualized the interaction of the DMN and
EMN as interference, in the sense that when one is up-regulated
the other needs to be down-regulated. However, the interaction is
probably best described as of a dimensional interaction, such that

the up-regulation of the EMN is not dependent on the full down-
regulation of the DMN, but that the relationship may follow
a quantitative, correlational, trajectory. This would be similar
to what Popa et al. (2009) found for the relationship between
the DMN and task-related activity, and also for the relationship
with sleep and anesthesia which demonstrated a gradual, rather
than categorical relationship between resting-state and task-
related activity (cf. Greicius et al., 2008; Foster et al., 2015).
We further suggest that the EMN follows a threshold effect,
which will vary depending on task novelty and which would
be predicted to be inversely related to DMN down-regulation.
When task novelty is high, and correspondingly overlearning
is low, the EMN will be elicited even when the DMN is not
fully down-regulated. Conversely, when task novelty is low, and
correspondingly overlearning is high, the elicitation threshold for
the EMN will be higher, i.e., the DMN must be down-regulated
to a higher degree. These predictions can be empirically tested
by designing tasks that will vary in novelty and previous learning
experiences at the individual level.

Switching between Resting and Task
Processing Periods in Everyday Life

There are two issues that need to be resolved in order to best
study the interference effects of DMN and EMN activity. The
first is that the DMN is typically acquired during prolonged
scanning periods of between 10 and 30 min of resting in silence,
except for scanner noise, allowing for the mind to “wander freely”
(Gruberger et al., 2011; Sood and Jones, 2013 for reviews). Brain
activation data acquired during such periods are then for example
compared between a clinical and healthy control group, and
typically finding that the clinical group show aberrant activation
compared to the control group. It is then concluded that DMN
hyper-activation causes interference with task-processing in the
clinical group, which would then explain why, e.g., schizophrenia
or depressed patients show impaired cognitive functioning. The
problem with such a conclusion is that the subjects are typically
studied only during a resting period and not also during a task-
processing period (see however, Whitfield-Gabrieli et al., 2009;
Mannell et al., 2010), which makes it difficult to draw conclusions
about how the same groups would perform during active task-
processing. Several studies have shown that psychotic patients
reveal disruption of cortical connectivity during resting periods,
even with large samples (e.g., Baker et al., 2014). However,
these studies typically scan patients and controls only during
resting, it is therefore not possible to conclude whether the same
patients also show disruption of EMN, which would require
an analysis across different tasks, or an analysis of up- and
down-regulations of the DMN and EMN during alternations of
task-absent and task-present epochs in the course of the MR
scanning session. A similar problem will appear when different
methods are used for analyzing resting-state data. The resulting
component “blobs” and hence the inferred network connectivity
from different analysis approaches may vary across analysis
domains, such as intensity, spatial extension, and even what may
constitute an activation (“blob”). It has been shown that there is
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competition between resting state and task processing periods
that correlates with fluctuations in default mode activation
(Greicius and Menon, 2004), and that spontaneous lapses in
attention in between focused attention epochs also modulates
the strength of default mode activation (Weissman et al., 2006;
Eichele et al., 2008). It therefore seems reasonable to assume that
there should be ongoing up- and down-regulations of resting and
task processing activity during the course of a day, which cannot
be concluded from monitoring network activity during resting
periods, or between separate resting and task-processing periods.

The second problem is that prolonged rest periods, as in
the typical MR scanning situation, in the absence of any
competing stimuli is an artificial situation, seldom encountered in
everyday-life, where such experiences are constantly interrupted
by interfering stimulus-processing episodes. Also problematic
is the notion of the DMN as a marker of “mind-wandering”
(Christoff et al., 2009) or “day-dreaming” (Kucyi and Davis,
2014). As pointed out by Raichle (2015b), the fact that the DMN is
present under anesthesia in both humans and other animals, and
in sleep (Fukunaga et al., 2006) suggest that the activation seen in
the DMN during resting-state periods is not necessarily restricted
to unconstrained conscious experiences, like mind-wandering.
A better situation would perhaps be listening to music as a
kind of mental resting (which interestingly is a situation where
an external stimulus is present, but with no task-requirements).
The only study we know of that has investigated DMN and
music experience is Kay et al. (2012) who found that music
listening was a valid condition under which the DMN could be
studied.

However, the examples given above are exceptions, and the
normal every-day experience of most people is not of lying on
the beach day-dreaming, or listening to music, most of the day,
doing nothing, but rather going in and out of task processing and
periods of rest. Thus, a key question is how to operationalize the
switching in and out of the two network modes in the scanner
situation. This would better model the everyday-life situation,
with shifting demands in between brief mind-wandering periods
(see Shulman et al., 1997 for an example of such analysis).

Outstanding Questions

There are several outstanding questions with regard to the
conditions under which a generalized mode network for extrinsic
activity will be elicited. Here we list some of these questions that
should be sorted out in future research:

• The relationship between the DMN and EMN is probably not
absolute in the sense that when one is present the other is
absent, but the exact nature of the relationship is not known.
In other words, to which degree is one network less expressed
than the other in an interaction between the two, and is there a
third region or network that mediates this interplay.

• Is the EMN dependent on one or several key cognitive sub-
processes which act as eliciting factors? Although discarded
as a unique elicitor in the discussion above, attention may
still exert a key role, such that a task with low attention load

would have less power to elicit the EMN, independent of the
difference in cognitive demands across tasks.

• Are the underlying physiological mechanisms (receptors,
transmitters) same or different for the EMN and single
process-driven activation? The increasing use of MR
spectroscopy together with BOLD-fMRI recordings will
allow for quantification and correlations of levels of brain
metabolites and transmitters, like glutamate, glutamine,
GABA, choline, creatine, NAA and others, with BOLD data.
In this way it would be possible to relate specific transmitters
to the two networks.

• Are the EMN and DMN networks actually two sides of a single
larger brain system? A recent study by Foster et al. (2015) may
provide a first hint that task-positive activation patterns may be
components of common, higher-order network interactions.
Foster et al. (2015) used intracranial EEG recordings from
the cortical surface and found that high-frequency gamma
band equivalents of DMN components were present not
only during resting and sleep, but also during active task-
processing. Popa et al. (2009) reported similar results, when
recording unit activity and local field potentials from the cat
cortex. Popa et al. (2009) found evidence for what they called
“large-scale coordination of activity” in parieto-temporal and
cingulate cortex regions, respectively, that were associated
with task-positive and task-negative stimulus conditions. Since
these connectivity-overlaps often are hidden in the neuronal
noise produced during these states, overlapping epochs of
the activation patterns gets buried in the background noise,
while anti-correlated epochs stand out, and are therefore more
easily seen. Our previous thinking might therefore have been
misled by the fact that these networks at certain points in
time are anti-correlated, making us assume that they must
be separate networks, rather than components of one single
system.

Hopefully, future research will resolve these issues and
questions, and also apply an EMN/DMN perspective when
studying aberrant network connectivity and network interaction
dynamics in clinical groups, which can open up new avenues
for the understanding of the neuronal underpinnings of some of
the most severe mental disorders. A network dynamics approach
may also apply to the study of other mental states, than a
mind wandering resting state versus active task-processing. As
mentioned above, the mental state induced by listening to music
is one such state, where the neuronal substrates are largely
unknown (see however, Blood et al., 1999; Zatorre, 2003). It
should also be of interest to use a network dynamics approach
with consecutive up- and down-regulations of the EMN and
DMN across time in patients with mental and neurological
disorders and diseases.
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