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Abstract
A growing field of research explores links between behavioral measures and functional connectivity (FC) assessed using
resting-state functional magnetic resonance imaging. Recent studies suggest that measurement of these relationships may
be corrupted by head motion artifact. Using data from the Human Connectome Project (HCP), we find that a surprising
number of behavioral, demographic, and physiological measures (23 of 122), including fluid intelligence, reading ability,
weight, and psychiatric diagnostic scales, correlate with head motion. We demonstrate that “trait” (across-subject) and
“state” (across-day, within-subject) effects of motion on FC are remarkably similar in HCP data, suggesting that state effects
of motion could potentially mimic trait correlates of behavior. Thus, head motion is a likely source of systematic errors
(bias) in the measurement of FC:behavior relationships. Next, we show that data cleaning strategies reduce the influence of
head motion and substantially alter previously reported FC:behavior relationship. Our results suggest that spurious
relationships mediated by head motion may be widespread in studies linking FC to behavior.
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Introduction
The number of resting-state fMRI (R-fMRI) studies has grown
exponentially over the last decade (Birn 2012; Snyder and Raichle
2012). A principle analytic approach in these studies is computa-
tion of the interregional correlation of spontaneous fluctuations
in the blood oxygenation level dependent (BOLD) signal. This
measure is referred to as functional connectivity (FC). Many FC
studies assume that interindividual differences in the magnitude
of observed correlations reflect a biologically meaningful

difference in brain function. Accordingly, FC has been used to
study a wide range of neurological and psychiatric diseases as
well as differences in cognitive function across the healthy popu-
lation (Barkhof et al. 2014; Fornito and Bullmore 2015).

Sources of Noise and Spurious Correlation

A major challenge in the interpretation of FC:behavior analyses
is removal of artifact from the BOLD signal. Head motion
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(frame-wise displacement; FD) has long been recognized as a
source of artifact in task-based magnetic resonance imaging
(Friston et al. 1996; Siegel et al. 2014). This problem is particu-
larly severe in R-fMRI because head motion generates spatially
structured artifact that systematically alters FC measurements
in characteristic ways (Power et al. 2012; Satterthwaite et al.
2012; Van Dijk et al. 2012). An FC:behavior finding that has
spanned many studies is that the young, the elderly, and popu-
lations affected by neurologic or psychiatric abnormalities
often exhibit “underconnectivity” relative to healthy young
adults, especially in the default mode network (Andrews-
Hanna et al. 2007; Fair et al. 2007; van Eimeren et al. 2009;
Dosenbach et al. 2010; Liu et al. 2014). These studies emphasize,
in particular, reduced FC between the medial prefrontal cortex
and posterior cingulate cortex. This is among the FC most
altered (reduced) by head motion (Power et al. 2012).
Subsequent studies controlling for motion artifact and motion
differences between groups found that such results may be
largely spurious (Deen and Pelphrey 2012; Power et al. 2012;
Satterthwaite et al. 2012; Chai et al. 2013; Fair et al. 2013;
Tyszka et al. 2014). Despite these cautionary findings, many
studies continue to report FC:behavior relationships without
adequate consideration of head motion.

Approaches to Remove Artifact

Numerous preprocessing and data cleaning approaches have
been developed to reduce the impact of imaging artifact (e.g., Jo
et al. 2010; Shirer et al. 2015). Compensation for head motion by
realignment and time course regression of realignment esti-
mates (and their temporal derivatives) are used nearly ubiqui-
tously. Beyond this, the neuroimaging field has yet to reach a
consensus regarding what approaches should be taken or how
strictly to apply criteria for cleanup or exclusion of corrupted
data. Commonly used approaches for cleaning data include
multiple time course regression, frequency filtering to remove
cardiovascular, respiratory, motion-induced artifacts, censoring
of frames flagged based on head motion and/or signal spikes,
exclusion of high-motion subjects, and regression of measur-
able covariates of no interest. A comparative analysis of many
of these approaches is given in Power et al. (2015) . Partial cor-
relation has also been proposed as an alternative approach for
removing spurious shared variance in correlation analysis
(Smith et al. 2011). More recently, the application of independ-
ent component analysis to identify and remove unwanted
components of the BOLD signal has been proposed (Salimi-
Khorshidi et al. 2014). The value of each of these approaches in
the study of FC:behavior relationships remains incompletely
understood.

FC:Behavior in the Human Connectome Project

The Human Connectome Project (HCP) offers an unprecedented
opportunity to understand how FC relates to task-evoked BOLD
responses, structural connectivity, behavior, and genetics in a
large population of 1200 healthy young adults (Van Essen et al.
2013). Prior work using FC data from the HCP has reported FC:
behavior relationships as regards fluid intelligence and life suc-
cess (Finn et al. 2015; Smith et al. 2015). The HCP consortium
recently released data from 500 subjects. In addition to min-
imal preprocessing, these R-fMRI data have undergone process-
ing steps designed to remove artifact (HCP FIX-ICA denoising
pipeline) with the intention of providing clean, ready-to-use
data (Smith et al. 2013). However, the degree to which head

motion influences observed FC:behavior relationships in these
data has not been systematically evaluated.

Using data from the HCP 500 subject release, we first ask
which behavioral, demographic, and physiological measures
correlate with head motion across subjects. Next, we establish
how head motion affects BOLD signal correlations, both inter-
subject (‘trait’ analysis) and intrasubject across scanning ses-
sions (state analysis). The intrasubject approach enables
modeling of the effects of head motion on FC while avoiding
potential neurobiological differences between high and low
movers. Next, using the example of fluid intelligence, we meas-
ure intersubject FC:behavior relationships. We then estimate
the influence of head motion by measuring the similarity
between intrasubject effects of head motion and observed FC:
behavior relationship. Finally, we ask how additional data
cleaning approaches (not included in the HCP FIX-ICA denois-
ing pipeline) alter computed FC:behavior relationships by redu-
cing the effects of head motion.

Materials and Methods
Resting-State fMRI Data

We downloaded resting-state fMRI (R-fMRI) data from the HCP
Q3 release that had been run through the HCP FIX-ICA denoising
pipeline (https://db.humanconnectome.org/; Data Access Point in
Fig. 1). In total, this data set included 461 healthy adults (ages 22–
35 years, 271 females) scanned on a 3T Siemens connectome-
Skyra scanner (Uğurbil et al. 2013). R-fMRI was acquired with
multiband echo-planar imaging at a temporal sampling rate of
0.72 s per volume and 2-mm isotropic voxels. Each subject con-
tributed 4 × 15 -min runs of R-MRI data acquired in 2 phase-
encoding directions on 2 separate days (rfMRI_REST1_RL,
rfMRI_REST1_LR, rfMRI_REST2_RL, rfMRI_REST2_LR). To enable
cross-subject registration and surface mapping, T1-weighted and
T2-weighted structural images of (0.7 -mm isotropic voxels) were
also acquired, and EPI susceptibility distortions were corrected
using B-zero field mapping. The downloaded data had been min-
imally preprocessed as described in Smith et al. (2013)
and Glasser et al. (2013). Subject 14 626 was a duplicate and
therefore removed. Three subjects (124220, 147030, 151526) with
average FD greater than 4 standard deviations (SDs) above the
mean were also removed leaving 457 subjects.

R-fMRI data from the first 177 subjects were reconstructed
using an HCP-specific pipeline that was later improved (intern-
ally by the HCP). The present principal results were obtained
using only data reconstructed with the improved pipeline (284
subjects). All analyses were repeated using all 457 subjects; the
obtained results are reported in the supplement.

R-fMRI Preprocessing

Preprocessing steps applied prior to download (Fig. 1, HCP
Processing) included the following: 1) one step resample
(motion realignment, field map, and gradient distortion correc-
tion, Montreal Neurological Institute atlas registration), 2)
whole-brain mean 10 000 intensity normalization, 3) cortical
ribbon-based volume to surface mapping with exclusion of
noisy voxels, 4) resampling to atlas-registered 32k mesh, 5)
2mm full-width at half-maximum geodesic surface smoothing.
Finally, the data were run though the HCP FIX-ICA denoising
pipeline. FIX (FMRIB’s ICA-based X-noiseifier) is an automated
IC-classifier designed to remove artifactual components from
FC data (Salimi-Khorshidi et al. 2014). Briefly, the HCP
FIX-ICA denoising pipeline begins with high-pass filtering
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(cutoff = 1/2000 s) using fslmaths. Next, spatial ICA is used
to deconstruct the data into constituent components.
Components are then automatically classified as signal or noise
based on spatial and temporal features. Finally, partial regres-
sion is performed using 24 motion regressors and all time
courses from “noise” components. In additional analyses com-
paring data processing pipelines, HCP data not run through the
FIX-ICA pipeline were additionally accessed from https://db.
humanconnectome.org/.

Parcellation

Time series were extracted from a 324-region cortical parcella-
tion (Gordon et al. 2016) (Supplementary Fig. S1). This parcella-
tion is based on R-fMRI boundary mapping and achieves full
cortical coverage and optimal within-region homogeneity. The
original parcellation included 333 regions. Here, we excluded all
regions with less than 20 vertices (ca. 50mm2). The final parcella-
tion included 324 regions of interest (159 left hemisphere,165
right hemisphere). Subcortical regions were necessarily excluded
as the parcellation technique operates in surface (2D) space,
while subcortical data are volumetric (3D). Parcel time series
were then demeaned, detrended, and variance normalized.

Type A FC Processing

In Type A processing (Fig. 1, left), data previously run though
the HCP FIX pipeline were downloaded, parcellated, demeaned,
and detrended. Pearson correlation coefficients were calculated
between each parcel, and Fisher r-to-z transformed. Correlation
values were calculated for each of the 4 runs and averaged to
generate the connectivity matrix for each subject.

Type B FC Processing

Type B processing (Fig. 1, right) included all steps used in Type
A processing followed by additional steps prior to calculating
FC:

1. Multiple time course regression.
2. Bandpass filtering.
3. Frame censoring (scrubbing).
4. Run exclusion. If any run from either day contained less

than 400/1200 frames postscrubbing (see below), then both
the LR and RL runs from that day were excluded. Of note,
61/457 subjects had 1 day excluded, 32/457 subjects did not
have any usable runs after scrubbing and were excluded
entirely from further analysis. Below is a complete descrip-
tion of each step included in Type B processing.

Data Cleaning

Multiple Time Course Regression
Volume processed data were downloaded from the HCP for
generation of tissue-based regressors. Regressors were calcu-
lated using white matter, ventricle, and gray matter masks.
First, BOLD volumes were down-sampled to 3 mm3 and tissue
compartment masks were applied, excluding voxels not com-
pletely within the mask. Multiple tissue compartment regres-
sors were generated by decomposition of white matter and
ventricle time courses using PCA (Behzadi et al. 2007). Down-
sampled voxel time courses were detrended prior to PCA and
the first 5 eigenvectors were retained as regressor time courses.
A single regressor was used for the average gray matter time
course. Regressors were extracted from motion-corrected and
intensity-normalized BOLD data passed through the FIX-ICA
volume pipeline. Regressors were applied in a single step mul-
tiple time course regression (MTR). All frames were included in
MTR.

Bandpass Filtering
Temporal frequency filtering was performed using a first-order
Butterworth FIR filter with passband 0.009 to 0.08 Hz in the for-
ward and reverse directions. Prior to filtering, time courses
were padded with 1/0.009 or 112 frames on either end to pre-
vent edge effects. When filtering was conducted in conjunction
with scrubbing, censored frames were replaced using linear
interpolation. This step insures that motion artifact in frames
marked for removal do not blur into retained frames as a result
of filtering (Carp, 2013).

Frame Censoring (Scrubbing)
Corrupted volumes were identified on the basis of FD as well as
the voxel-wise differentiated signal variance (DVARS) (Smyser
et al. 2010). FD indexes movement of the head from one volume
to the next, and was computed as the sum of the absolute
values of the differentiated rigid body realignment estimates at
every time point with rotation evaluated at a radius of 50 mm.

HCP Minimal R-fMRI 
preprocessing

Type A Processing

Motion timecourse 
regression

FIX-ICA denoising pipeline

demean/detrend 

Extraction of time-series 
from 324 parcels

Data Access Point

Run-wise functional connectivity 
(Fisher z-transformed Pearson 

correlation)

Average FC across runs

Type B Processing

Multiple timecourse regression: 
i. gray matter timecourse 

ii. 5 white matter regressors 
iii. 5 ventricle regressors

Frame Censoring: 
i. filtered FD < 0.025mm 

ii. DVARS > 105% of median

Linear interpolation over 
censored frames

Bandpass filter 0.009-0.08Hz

Exclude censored frames

exclude 
full day 
(LR+RL 

runs)

> 400 
frames?

Figs. 2, 3, 4, 5 Figs. 3, 4, 5

Figure 1. Data processing schematic. Boxes with black text indicate processing

steps that occurred prior to accessing data. Surface projected and FIX-ICA

pipelineR-fMRI data (e.g., rfMRI_REST1_LR_hp2000_clean.dtseries.nii) was

accessed from https://db.humanconnectome.org. Italic text indicates process-

ing steps implemented prior to access of R-fMRI data. Type B processing

included a number of additional data cleaning steps implemented after parcel

time series were extracted, demeaned, and detrended.

4494 | Cerebral Cortex, 2017, Vol. 27, No. 9

https://db.humanconnectome.org/
https://db.humanconnectome.org/
https://db.humanconnectome.org


The variance of differentiated signal (DVARS) indexes change
in signal intensity from one volume to the next, and was calcu-
lated prior to nuisance regression as the spatial root mean
square value of the temporally differentiated BOLD time series
evaluated over the whole brain.

Pervasive high frequency noise in the FD traces was consist-
ently observed across subjects. Spectral analysis (Fast Fourier
Transform) revealed a peak in the power spectrum at 0.3 Hz
(Supplementary Fig. S2), consistent with motion artifact attribut-
able to respiration. Respiration is unlikely to reflect the same kind
of head motion that introduces systematic artifacts into BOLD
data (Power 2012, 2014); therefore, a 0.3Hz low-pass filter was
applied to the FD traces. A cutoff threshold of 0.025 mm was cho-
sen after visual examination of the filtered FD traces to include
normal variations in FD but exclude values suggestive of spikes in
head motion (Supplementary Fig. S2). In some instances, DVARS
spikes were observed without corresponding FD spikes
(Supplementary Fig. S2, right). For this reason, a DVARS cutoff of
105% of the run median (since the DVARS baseline is run-specific)
was used as an additional frame censoring criterion.

Additional Data Cleaning Approaches
In a final comparison between 8 data processing strategies,
additional data cleaning approaches not included in Type B
processing were implemented (Fig. 6). These include confound
regression (at the population level), CompCor (multiple white
matter and CSF regressors but no gray matter regressor), and
partial correlation. See supplementary material for a full
description of these approaches.

Behavioral Measures

The HCP data release includes 478 behavioral, demographic,
and physiological measures. Descriptions of each measure can
be found at wiki.humanconnectome.org/display/PublicData/
HCP+Data+Dictionary+Public-+500+Subject+Release#HCPData
DictionaryPublic-500SubjectRelease. We selected a subset of
122 measures of potential neurobiological interest. Criteria for
exclusion of measure included values missing for a majority of
subjects, heavily skewed distribution, and likely irrelevance
(e.g., “Is the subject born in Missouri?”). Retained measures
included demographics (gender, income, education level, drug
use, etc.), psychometrics (IQ, language performance, etc.), dia
gnostic statistical manual (DSM) diagnoses (depression, antiso-
cial personality disorder, etc.), personality traits such as
“rule-breaking behavior, physiological” measures (blood pres-
sure, body mass index [BMI], etc.), and brain size. Exclusion cri-
teria and the complete list of retained measures are given in
the supplementary material.

Relating Behavioral Measures to Head Motion

Average FD and DVARS values for each subject were compared
with the 122 behavioral measures using Pearson correlation.
Significance cutoffs were determined using permutation
resampling (10 000 permutations; a cutoff was chosen for a
familywise alpha of 0.05, that is, 5% of permutations showed
one or more significant FD:behavior relationships).

Relating FC to Head Motion (IntraSubject)

The objective of the present work is to investigate the contribu-
tion of head motion to spurious FC: behavior relationships.
However, intersubject correlations cannot distinguish between

trait and state effects (e.g., real neurobiological differences that
might exist between high and low movers versus artifacts that
differentially accompany high versus low motion scans).
Accordingly, data acquired over 2 days were used to disambigu-
ate trait from state effects of head motion on BOLD signal cor-
relations (Zeng et al. 2014). For each subject, both FC and FD
were calculated on Days 1 and 2 and the cross-day difference in
FC and FD was evaluated. Next, the cross-day FC-on-FD regres-
sion was computed to determine ∆ ∆FC/ FD at every edge. The
resulting matrix reflects intrasubject effects of head motion
independent of trait differences.

Motion Influence on FC:Behavior

We define “motion influence” as the degree to which intrasub-
ject FC:FD weights explain variance in intersubject FC:behavior
relationships across ROI pairs (e.g., the Pearson correlation coef-
ficient between intrasubject FC:FD and intersubject FC:behavior
across all edges). Since motion effects are measured intrasubject
and FC:behavior is measured across subjects, an observed correl-
ation between them suggests that head motion likely contri-
butes to observed FC:behavior relationships. Absent a repeated
session design, state effects (e.g., direct effects of motion) would
not be distinguishable from trait effects (i.e., subject-specific pro-
pensity to move). Thus, the fraction of variance in FC:behavior
correlations explained by intrasubject FC:FD weights represents
a more reliable estimate of motion influence. Results obtained
using this approach are shown in Figures 3, 5, and 6.

Because FC correlations are nonindependent, statistical sig-
nificance of motion influence on FC:behavior was assessed by
permutation resampling. Specifically, covariance between intra-
subject FC:FD weights and FC:behavior was compared with a null
distribution using the following method. We simulated the null
hypothesis (no influence of head motion on FC:IQ) by replacing
IQ values with randomly permuted normally distributed values
(IQperm). For 1000 such permutations, a single measurement of
the covariance between FC:FD and FC:IQperm was recorded. A P-
value (Pperm) was assigned for actual motion influence by deter-
mining how many out of 10 000 permutations showed a larger
covariance. This same distribution of covariance values was used
to assign a P-value to motion influence across the 19 behavior
measures. However, 2 separate distributions were generated to
test motion influence in Type A and Type B data.

Surface Projection

Matrix (324 × 324) results, generated by correlating FC matrices
with other measures (FD or behavior) across subjects, were pro-
jected to brain surface regions (324 × 1) for visualization. Each
matrix produced a positive and negative projection. In the posi-
tive projection, the value within each parcel is the mean of the
top quartile of all of its connections (80/323). The negative pro-
jection is the mean of the bottom quartile. This approach was
previously described by Smith et al. (2015). FC:IQ projection
maps were thresholded at 0.135 based on a familywise false
positive rate (alpha) of 0.05 (i.e., 5% chance of one or more brain
parcels passing significance) over 10 000 permutations of IQ
scores.

100-Subject Subgroup FC:Behavior Analysis

The percent of FC:behavior correlations with a significance of
P < 0.05 (multiple comparisons uncorrected) was used as a
descriptive statistic. By definition, 5% represents the number of
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correlations expected by chance. To assess the sampling vari-
ability of this measure, multiple subgroups were created, each
including 100 randomly selected (without replacement) sub-
jects. For each subgroup, a Pearson correlation was computed
between FC at every edge (324-choose-2 = 52 362 edges) and
behavior. The distribution of the number of “significant” (P <
0.05) FC:behavior correlations was tabulated for each data pro-
cessing regime.

Code Availability

The full matlab analysis script is freely available at www.nil.
wustl.edu/labs/corbetta/resources/.

Results
Head Motion Correlates with Other Behaviors

Of the 478 behavioral, demographic, and physiological mea-
sures that accompany HCP data sets, 122 were selected as being
of neurobiological interest prior to analyses. Of these 122
measures, 23 showed a significant correlation with head
motion after familywise multiple comparison correction
(Puncorrected < 0.00056). These results are listed in Table 1.
Behaviors negatively correlated with head motion index cogni-
tive ability, e.g., reading engagement (subjects were asked to
read and pronounce words and scored on accuracy), education
level, and fluid intelligence (measured using the Penn
Progressive Matrices). Measures positively correlated with head
motion included psychiatric scales (DSM diagnoses and adult
self-report [ASR] behavioral syndromes), tobacco use, and obes-
ity (BMI, weight, blood pressure).

Twenty-two measures correlated with frame-to-frame sig-
nal variance (DVARS) with a P-value below the permutations
cutoff (Table S1). Measures positively correlated with DVARS
included negative personality scales (e.g., anger/aggression) as
well as hematocrit, gender, brain volume, weight, and BMI. No
negative correlations with DVARS were significant by permuta-
tion resampling.

Trait and State Effects of Head Motion on FC

Data acquired over 2 days were used to assess both intersub-
ject (trait) and intrasubject across-day (state) effects of head
motion on BOLD signal correlations. Type A processed FC data
(see Methods and Fig. 1) showed a stereotypical topography of
FC:motion correlations (Fig. 2). Pronounced FD-related
increases in measured FC were observed between the DMN
and task positive networks (black ovals in Fig. 2a/b).
Conversely, head motion corresponds to reduced FC within
the DMN (blue oval in Fig. 2a/b and negative weight projection
in Fig. 2c). Importantly, trait effects of motion were very simi-
lar to state effects of motion (Pearson correlation of trait effect
and state effect: r = 0.643, Pperm < 0.0001). In other words, the
FC signature of increased propensity to move across subjects
(trait) was very similar to the FC signature of variability in
movement across sessions within an individual (state) (Power
et al. 2012; Satterthwaite et al. 2012; Van Dijk et al. 2012).
Taken together, these findings indicate that state characteris-
tics associated with motion artifact potentially mimic other
trait characteristics of other behaviors correlated with head
motion in Table 1. This hypothesis was directly tested by
developing an assay for motion influence on FC:behavior
topography.

Head Motion Influences FC:Behavior Topography

To explore the influence of head motion on FC:behavior rela-
tionships, we compared intrasubject FC:FD to intersubject FC:
behavior (see Methods: Motion Influence on FC:behavior). FC
data analyzed with Type A processing were correlated with
fluid intelligence (IQ; Penn progressive matrix score) and matrix
results were projected onto the cortical surface (Fig. 3a). The value
for each parcel is the mean of the top quartile of all of its connec-
tions; the map is thresholded at a familywise alpha of 0.05.

Across subjects, IQ correlates negatively with head motion
(Table 1). Hence, we may expect to observe a negative correl-
ation influence of head motion on FC:IQ. This result is shown
on the right side of Figure 3a. Across all edges, FC:FD weights
were negatively correlated with FC:IQ weights (r = −0.31,
r2 = 0.10, Pperm = 0.0083). Thus, motion influence explains
roughly 10% of variance in the observed FC:IQ relationship.
Note the similarity between negative weights in Figure 2c (i.e.,
connections that become weaker with head motion) and posi-
tive weights in Figure 3a. Since the influence of head motion
was measured intrasubject and FC:IQ was measured across
subjects, the observed relationship between FC:IQ and FC:FD is
not simply attributable to an inherent correlation of IQ with
head motion (Zeng et al. 2014).

An analysis parallel to that illustrated in Figure 3a was
repeated for all 19 behavioral measures that showed a relation-
ship with FD (Table 1). Four physiological measures (e.g., dia-
stolic blood pressure) were excluded. Measures negatively
correlated with head motion (IQ and other measures with a
negative value in Table 1) were sign-inverted. FC:behavior
weights then were averaged across the 19 measures. The

Table 1 Correlates of in-scanner head motion

Subject measures Pearson r

ReadEng (AgeAdj) −0.23
ReadEng (Unadj) −0.23
Vocabulary (AgeAdj) −0.19
Dexterity (Unadj) −0.18
CardSort (Unadj) −0.18
Dexterity (AgeAdj) −0.18
CardSort (AgeAdj) −0.18
Education −0.17
Fluid intelligence −0.17
Spatial orientation −0.17
Vocabulary (unadjj) −0.17
Emotion recognition −0.16
DSM somatic problems (pct) 0.16
DSM antisocial (raw) 0.16
ASR externalizing (raw) 0.16
DSM somatic problems (raw) 0.16
Tobacco use 7 day 0.18
Diastolic blood pressure 0.18
ASR externalizing 0.18
Tobacco use today 0.2
Systolic blood pressure 0.23
Weight 0.52
Body mass index (BMI) 0.66

One hundred and twenty-two measures (behavioral, demographic, and physio-

logical) were compared with average subject head motion. Significance thresh-

olds were set at P < 0.00056 based on permutations. Twenty-three measures

showed significant correlation. Pearson r-values are shown at right. Average FD

and absolute change in FD between days were correlated at r = 0.45.
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results of this analysis (Fig. 3b) revealed a positive influence of
head motion on FC:behavior relationships (opposite to that
observed with IQ because of to sign inversion). FC:behavior
weights were strongly correlated with FC:FD across edges

(r = 0.50, r2 = 0.25, Pperm < 0.0001) and showed similar topog-
raphy (compare Figs. 2c and 3b).

We hypothesized that removal of artifactual variance in
BOLD fMRI data would reduce the influence of head motion on

Figure 2. Head motion exerts a stereotyped influence on FC. (a) Full matrix of intersubject FC:FD correlation coefficients, measured with Type A processed FC data. (b)

Full matrix of intrasubject (between day) FC:FD correlation coefficients. The spatial correlation between intrasubject and intersubject measures was r = 0.64. In (c) the

top positive and negative intrasubject FC:FD weights are projected to parcels on the brain surface. The value for each parcel in the positive projection is the mean of

the top quartile of values from all of its connections. The negative projection is the bottom quartile. RSN abbreviations: VIS = Visual network (38 ROIs); PO = parieto-

occipital (7 ROIs); SMD = dorsal somato-motor (37 ROIs); SMV = ventral somato-motor (8 ROIs); AUD = auditory (23 ROIs); CON = cingulo-opercular (39 ROIs);

VAN = ventral attention (23 ROIs); SAL = salience (4 ROIs); CP = Cingulo-parietal (5 ROIs); DAN = dorsal attention network (32 ROIs); FPN = frontoparietal control net-

work (24 ROIs); DMN = default mode network (40 ROIs); NON = no assigned network (44 ROIs).

Figure 3. Motion influences FC:IQ topography. This influence decreases with Type B FC processing. Each scatter plot shows FC:FD (intrasubject) weights versus FC:

behavior (intersubject) correlations. Each dot represents one of the 52 326 FC edges (324-choose-2). A larger correlation suggests greater head motion influence. Pperm
denotes the P-value generated by permutations testing as described in the methods–motion influence on FC:behavior section. (a) Left: map of connection strength

increases associated with IQ after Type A preprocessing (projection of top matrix weights). Right: scatter plot showing motion influence on Type A FC:IQ relationships.

FC:IQ and FC:FD are correlated at r = −0.31, r2 = 0.10, Pperm = 0.008. (b) Left: map of connection strength increases consistently associated with 19 motion-correlated

behavioral measures in Table 1 (excluding 4 physiological measures, flipping negatively correlated measures). Weights are averaged across measures and then pro-

jected. Right: scatter plot showing motion influence on average FC:behavior relationships. FC:behavior and FC:FD are correlated r = 0.50, r2 = 0.25, Pperm < 0.0001.

Panels (c) and (d) were generated with identical methods to (a) and (b), but with Type B FC data instead of Type A.

Data Quality and FC:Behavior Correlation Siegel et al. | 4497



FC:behavior correlations. Type B processing following Power
et al. (2014; Fig. 1) was implemented to test this hypothesis.
Type B processing resulted in a much more sparse topography
of FC:IQ relationships (compare Fig. 3a vs. Fig. 3c). The influence
of head motion on FC:IQ was no longer significant (r = −0.14,
r2 = 0.02, P = 0.129). Figure 3d illustrates the average FC:behavior
relationship obtained from the 19 FD-correlated measures.
Type B processing eliminated nearly all FC:behavior relations
shown in Figure 3b. Full matrices for intrasubject FC:FD, inter-
subject FC:FD, FC:IQ and FC:behavior average for Type A and
Type B FC data are shown in Figure S3. Note also that the mag-
nitude of intrasubject motion effects, and the similarity
between state and trait motion effects was much smaller with
Type B processing (r = 0.03). These 2 observations suggest that
spurious effects of motion are substantially reduced, but
unique trait effects of motion may still be present. Figures 2
and 3 include only fMRI data obtained using reconstruction
software version 2 (284 subjects). The analysis was repeated
with all 457 subjects in the Q3 data release (Figure S4). Results
were comparable although motion influence on FC:IQ is only
trending toward significance (r = −0.20, Pperm = 0.074).

If imaging artifacts influence FC:behavior relationships,
then better cleaning should reduce not only the prevalence of
spurious relationships but also measurement variability. To
test this hypothesis, we divided Type A and Type B processed
FC data into random subgroups of 100 subjects each. For each
subgroup, the number of significant FC:behavior correlations (P
< 0.05) was used as a descriptive measure. Thus, 5% of correla-
tions are expected to be significant by chance.

Figure 4a displays the percent of edges that showed FC:IQ
relationship in 185 Type A subgroups. High variability was
observed across subgroups. On average, 11.4 ± 11.9%
(mean ± SD) of edges correlated with IQ at P < 0.05 (uncor-
rected). By contrast, following Type B processing, 5.8 ± 1.2% of
edges correlated with IQ at P < 0 0.05 (Fig. 4c). Note that the dis-
tribution of FC:IQ correlations across all edges (mean = 5.8%)

was still significantly above the chance level of 5% (t-stat = 9.86,
P < 0.001). Thus, 5.8% may be consistent with a real but spa-
tially sparse FC:behavior relationship.

Figure 4b/d shows results parallel to Figure 4a/c for all 19
behavioral measures in Table 1. Following Type A processing,
7.9 ± 10.0% of edges correlated with behavior at P < 0.05.
Following Type B processing, 5.6 ± 1.5% of edges correlated
with behavior at P < 0.05 (Fig. 4e). Thus, Type B processing
reduced the number of edges showing “significant” FC:behavior
relationships and, importantly, substantially reduced variabil-
ity across subgroups.

Type B Processing Consistently Reduced the Influence
of Head Motion

Figure 3 demonstrates that FC:FD (intrasubject) and FC:behavior
(intersubject) measures are correlated across edges. This obser-
vation implies that the topography of apparent FC:IQ correla-
tions obtained with Type A processing is influenced by head
motion (Fig. 3a). This relationship was substantially reduced by
Type B processing (Fig. 3c).

Figure 5 shows results similarly comparing motion influence
in Type A versus Type B processing across other behavioral
measures. To facilitate visual comparison, the already-reported
comparison of head motion influence on observed FC:IQ correl-
ation is repeated in Figure 5a. Next, we generalized this ana-
lysis to other behavioral measures. First, we identified 4
measures not in Table 1 that showed a large motion influence
following Type A FC processing. These measures were rule
breaking, anger/aggression, life satisfaction, and amount of
sleep (Fig. 5b). A large absolute correlation suggests that FC:
behavior relationships are well explained by head motion; the
sign of the correlation reflects the valence of the measure (i.e.,
rule breaking relates positively to head motion, whereas
amount of sleep relates negatively to head motion). In all 4
cases, Type B processing substantially reduced the influence of
head motion (Fig. 5b). Similar effects of Type B processing were
observed across the 122 measures of potential neurobiological
interest (Fig. 5c). The plotted values in Figure 5c are the r2

values between FC:FD and FC:behavior in Type A versus Type B
processing, as reported in Figure 5 a/b. The line of identity cor-
responds to equal motion influence in Type A and Type B data.
Figure 5c indicates that Type B processing consistently reduced
the degree to which head motion influences apparent FC:
behavior relations.

Motion Influence in Different Data Cleaning Approaches

Several processing steps, some included in Type B and some
not, have been proposed to reduce the influence of motion on
FC analyses. We preprocessed FC data using 8 regimes and
assessed motion influence in each (see supplementary mater-
ial). These processing regimes variably included FIX-ICA
pipeline, MTR, frame censoring, exclusion of high-motion sub-
jects, and partial correlation (Fig. 6). For each regime, motion
influence was calculated across the 19 (nonphysiological) mea-
sures from Table 1. Figure 6 reports the mean and standard
error of motion influence on FC:behavior estimates for each
processing regime. Type B processing showed significantly less
motion influence than minimal preprocessing, Type A, scrub-
bing alone (Type A + scrub) or global signal regression with
low-pass filtering (“Finn et al.”) (P < 0.05, 2-tailed paired t-tests,
Bonferroni corrected for 8 comparisons). However,
“CompCor + scrub” and “Type A + partial correlation” also

Figure 4. Comparing global FC-behavior relationships. Each blue dot represents

the proportion of edges with FC:behavior correlation P < 0.05 for one 100-

subject subgroup. The solid and dashed red lines represent mean and 95%

bounds across subgroups, respectively. (a) For Type A subgroups, 11.4 ± 11.9%

(mean ± SD) of edges correlated with IQ at P < 0.05 (uncorrected). (c) For Type B

subgroups, 5.8 ± 1.2% of edges correlated with IQ at P < 0.05. (b/d) The same pro-

cedure is applied to all 19 motion-correlated measures. On average, for Type A

and Type B subgroups, 7.9 ± 10.0 and 5.6 ± 1.5% of edges, respectively, corre-

lated with behavior at P < 0.05.
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showed low motion influence (not significantly different from
Type B). Importantly, Type B processing showed significantly
greater motion influence than random permutations, indicat-
ing that some confounding influence is still present.

Discussion
We find that a large number of behavioral, demographic, and
physiological measures (23 of 122) correlate with head motion
in an fMRI scanner. Measures of cognitive ability, such as fluid
intelligence, showed negative correlations; psychiatric scales
(e.g., DSM Antisocial Behavior), tobacco use, and BMI showed
positive correlations (Table 1). This is consistent with a prior
report linking measures of impulsivity to head motion (Kong
et al. 2014). The particularly strong correlation between BMI
and FD (Figure S5) may be mediated in part by respiratory
effort, as can be inferred from respiratory oscillations in FD
time courses (Fig. S2). Larger individuals typically breathe more
rapidly and with greater effort in the supine position, thereby
generating respiration-related motion artifact.

For behavioral measures that correlated with head motion,
we observed correlation between intrasubject FC:FD topography
and FC:behavior topography (Fig. 3a/b). Theoretically, correla-
tions between head motion and FC could be mediated by true
neurobiological differences between movers and nonmovers
(Zeng et al. 2014). However, this line of reasoning cannot
explain FC:FD relationships evaluated on the basis of intrasub-
ject effects of motion (Fig. 2).

To determine if previously published data cleaning steps
can reduce the influence of head motion on FC:behavior

Figure 5. Type B processing reduced the influence of head motion across many

behaviors. Each scatter plot shows FC:FD (intrasubject) weights versus FC:

behavior (intersubject) correlations. A larger correlation suggests greater head

motion influence (correlation coefficients greater than r = 0.272 are significant

at P > 0.05 based on permutations). The left column is generated with Type A

processing, the right column is generated with Type B processing. (a) The influ-

ence of head motion on FC:IQ relationships. r-Values are given above each plot.

(b) The influence of head motion on FC:behavior relationships for 4 measures

showing apparent influence of head motion but not included in Table 1.

Pearson correlations are shown in red above each plot. (c) Across all 122 subject

measures, the influence of head motion drops toward zero with additional

cleaning steps included in Type B processing. IQ is shown in magenta and the 4

measures in Panel b are shown in red.
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Figure 6. Motion influence on FC:IQ across FC processing regimes. The approach

to estimate motion influence in Figure 3 was applied following several FC pro-

cessing strategies. Bars indicate mean motion influence for the 19 behavior

measures in table 1, error bars indicate standard error of the mean. Asterisks

and horizontal bars above the indicate P < 0.05 following 8 two-tailed paired t-

tests comparing Type B processing with all other processing regimes,

Bonferroni corrected for multiple comparisons. “MPP+”: HCP minimal prepro-

cessing plus motion regression (24 regressors), demeaning, detrending, and

variance normalization; “Type A–36 subs”: 36 high-motion subjects were

removed (matching those removed in Type A + scrub); Finn et al.: minimal pre-

processing (excluding FIX), with regression of 24 motion parameters as well as

mean gray, white, and ventricle time courses, and bandpass filtering (as used in

Finn et al. 2015 prediction of IQ). CompCor + scrub: similar to Type B except

CompCor regressors (10 white matter and ventricle PCA-derived regressors)

were included and the gray matter regressor was excluded; Type A + partial

correlation: “Permutation”: the mean and SD of motion influence for 1000 ran-

dom permutations of Type A processed FC data.
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correlations, we introduced Type B processing. Type B process-
ing includes multiple time course regression, bandpass filter-
ing, scrubbing of high-motion and high variance frames, and
total exclusion of high-motion fMRI sessions (Fig. 1). Type B
processing substantially altered the topography of FC:IQ corre-
lations and significantly reduced the influence of head motion
(Figs. 3 and 5). These results suggest that FC:behavior relation-
ships of the type illustrated in Figure 3a are largely attributable
to factors other than IQ.

In a final analysis, we compared 8 different data processing
regimes and found that 2 approaches reduced motion influence
at levels comparable to Type B: 1) Type B processing excluding
an explicit global signal regressor but using additional PCA-
based nuisance regressors (CompCor) and 2) Type A processing
followed by partial correlation (rather than full Pearson correl-
ation). A prior study by Muschelli et al. found that some
distance-related motion artifact persisted following CompCor
regression, but was removed when scrubbing was performed in
addition to CompCor (Muschelli et al. 2014). Thus, we included
scrubbing in our CompCor processing regime, and found it to
be effective at reducing motion influence. Our results suggest
that alternative approaches that do not employ gray matter sig-
nal regression per-se may be equally effective at reducing
motion influence.

As there is no reason to believe that the influence of head
motion on FC:behavior relationships is specific to HCP data, our
results imply that many previously published results identify-
ing R-fMRI differences across or between groups should be crit-
ically re-examined. Autism spectrum disorder provides a
cautionary tale of this imperative. Early R-fMRI studies of ASD
identified numerous FC abnormalities, primarily, reduced cor-
relations (Cherkassky et al. 2006; Monk et al. 2009; Jones et al.
2010). However, as additional reports accumulated, substantial
inconsistencies across studies became apparent. These incon-
sistencies were attributed to interlaboratory variability in
methodology (Müller et al. 2011). As approaches for removing
motion artifact became more widely recognized, several papers
incorporating appropriate controls for head motion reported
largely typical findings in high functioning adults with ASD
(Redcay et al. 2013; Tyszka et al. 2014; Mitra et al. 2015).

Despite good faith efforts to account for head motion in
prior studies, our findings suggest that complete removal of the
confounding influence of head motion is difficult or impossible
(Fig. 5). Nevertheless, when a sufficient amount of R-fMRI data
has been acquired, data sets corrupted by motion may remain
largely viable after adequate steps have been taken to remove
artifactual variance. In our Type B processing, only 36 subjects
were removed from the cohort of 461 (23 out of 284 for recon-
struction version 2). Additional maneuvers for reducing the
impact of head motion would be to balance head motion across
groups and to use individual FD measures as nuisance regres-
sor at the group level, with the caveats pointed out by Power
et al. (2014).

Limitations

Head motion, inferred from retrospective image realignment,
may be linked to BOLD signal artifacts through several mechan-
isms. Most obviously, head motion leads to spin history effects
that generate artifacts on the basis of imaging physics (Friston
et al. 1996). However, head motion very likely is linked to
physiological modulators of the BOLD signal. In particular,
changes in respiratory rate occurring spontaneously or in asso-
ciation with sighs, coughs, etc., may induce large nonneural

transients in the BOLD signal through changes in arterial pCO2

(Wise et al. 2004). Respiratory rate modulations also potentially
affect the BOLD signal through changes in cerebral perfusion
consequent to fluctuating cardiac rate (Raj et al. 2001; Birn
2012). Finally, as discussed, some modulations of the BOLD sig-
nal associated with head motion may reflect true sensory or
motor neural responses (Yan et al. 2013; Zeng et al. 2014). Thus,
observed head motion may ultimately represent a proxy for a
variety of artifactual as well as neural transients in the BOLD
signal.

Head motion is one of the multiple physiological confounds
with known or not fully understood influence on the BOLD sig-
nal (Raj et al. 2001; Shmueli et al. 2007; Birn 2012). Techniques
have been developed to reduce cardio-pulmonary pulsation
artifacts in R-fMRI data using pulse oximeter and respiratory
belt records (Chang and Glover 2009; Murphy et al. 2013). At the
time of this study, these records were not available. However,
pulse oximeter and respiratory belt data were acquired by the
HCP and should be accessible in later releases.

Moreover, an approach that defines nuisance regressors on
the basis of voxels with high temporal SD (tCompCor) was pre-
viously found to be equal or more effective than anatomical
CompCor (CSF and white matter) (Behzadi et al. 2007). The
benefit of such an approach on HCP data preprocessed using
FIX remains to be determined.

Interpreting Observed FC:Behavior Relationships

The persistent influence of head motion (Fig. 5) suggests that,
even after data cleaning, the interpretation of FC:behavior cor-
relations must be approached with caution. FC within a broad
topography may directly relate to IQ (Cole et al. 2013; Finn et al.
2015; Smith et al. 2015), with the inference that IQ also med-
iates physiological factors as well as propensity to move. The
difficulty with this interpretation is that motion imposes a
stereotypical FC topography in R-fMRI data (Yan et al. 2013). In
fact, this “motion artifact topography” is the same set of
regions within which FC seems to predict IQ (cf. Fig. 3a to Finn
et al. 2015). An alternative interpretation is that there is a rela-
tion between IQ and other factors (such as head motion) that
influence FC. Thus, FC:IQ correlations may be observed that do
not represent true neural correlates of intelligence. Therefore,
on the basis of correlations alone, it is not possible to elucidate
the true causal structure underlying physical factors, head
motion, IQ, and FC.

This uncertainty points to a larger challenge in the inter-
pretation of observed FC:behavior relationships. Specifically, it
is essential to avoid over interpreting an observed correlation
between variables. Just as we would hesitate to ascribe a causal
link between years of education and head motion (shown to be
correlated in Table 1), so should we be careful when interpret-
ing a correlation between FC and IQ. There is a long history of
attempting to correlate variability in various brain measures to
behavior; for the most part, causal inferences derived from
these studies have not stood the test of time (Gould 1996).
Therefore, it is essential to emphasize that properties of the
brain inferred on the basis of BOLD fMRI FC remain uncertain,
and a neurobiologically meaningful basis for interindividual
differences in FC remains to be established. It is only by comb-
ing technical improvements in the acquisition and analysis of
R-fMRI data with careful investigation of FC:behavior relation-
ships that we can begin to understand how behavioral mea-
sures relate to neural function.
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Glossary
• BOLD – blood oxygenation level dependent
• DVARS – signal variance across the whole brain
• EPI – echo-planar imaging
• FC – Functional connectivity
• FC:Behavior – correlation between FC and behavior
• FD – framewise displacement (head motion)
• FIR filter – finite impulse response filter
• FIX-ICA – FMRIB’s ICA-based X-noiseifier using independent
component analysis

• HCP – Human Connectome Project
• IQ – fluid intelligence score on Penn progressive matrices
• MPP – minimal preprocessing pipeline
• MTR – multiple timecourse regression
• PCA – principal components analysis
• R-fMRI – resting state functional magnetic resonance imaging
• DVARS – signal variance across the whole brain
• IQ – score on Penn progressive matrices (fluid intelligence)

Supplementary Material
Supplementary material can be found at: http://www.cercor.
xfordjournals.org.
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