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Abstract
Head motion systematically alters correlations in resting state functional connectivity fMRI
(RSFC). In this report we examine impact of motion on signal intensity and RSFC correlations.
We find that motion-induced signal changes (1) are often complex and variable waveforms, (2) are
often shared across nearly all brain voxels, and (3) often persist more than 10 seconds after motion
ceases. These signal changes, both during and after motion, increase observed RSFC correlations
in a distance-dependent manner. Motion-related signal changes are not removed by a variety of
motion-based regressors, but are effectively reduced by global signal regression. We link several
measures of data quality to motion, changes in signal intensity, and changes in RSFC correlations.
We demonstrate that improvements in data quality measures during processing may represent
cosmetic improvements rather than true correction of the data. We demonstrate a within-subject,
censoring-based artifact removal strategy based on volume censoring that reduces group
differences due to motion to chance levels. We note conditions under which group-level
regressions do and do not correct motion-related effects.
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Introduction
Head motion correction has become a prominent concern in the field of resting state
functional connectivity fMRI (RSFC), especially for investigators studying pediatric,
clinical, or elderly populations. The renewed attention to head motion stems in part from the
realization that even small amounts of movement can produce spurious but spatially
structured patterns in functional connectivity (Power et al., 2012; Satterthwaite et al., 2012;
Van Dijk et al., 2012). The structured artifact arises because motion adds spurious variance
to ‘true’ timeseries, and this spurious variance is most similar at nearby voxels.
Consequently, correlations between BOLD timeseries are spuriously increased across all
voxels, but are most increased between nearby voxels.

At present, all post-hoc subject-level processing strategies that have been examined have
incompletely removed motion artifact, as evidenced by residual cross-subject dependence of
RSFC measures on summary motion measures, or by distance-dependent changes seen
between high- and low-motion scans or subjects (Bright and Murphy, 2013; Mowinckel et
al., 2012; Power et al., 2012; Satterthwaite et al., 2013; Satterthwaite et al., 2012; Van Dijk
et al., 2012; Yan et al., 2013). This is true for processing strategies that have used large
numbers of motion regressors (Satterthwaite et al., 2013; Yan et al., 2013), global signal
regression (Power et al., 2012; Satterthwaite et al., 2013; Satterthwaite et al., 2012; Van Dijk
et al., 2012; Yan et al., 2013), voxel-specific motion regressors (Satterthwaite et al., 2013;
Yan et al., 2013), ICA-based nuisance removal (Mowinckel et al., 2012; Satterthwaite et al.,
2012; Tyszka et al., 2013), or extensive modeling of physiological noise (Bright and
Murphy, 2013). To eliminate motion-related effects, further corrections at the subject or
group level are needed.

Group-level correction has been implemented by regressing a summary quality control (QC)
measure for each subject from each set of correlations (or outcomes) across subjects
(Satterthwaite et al., 2012; Van Dijk et al., 2012; Yan et al., 2013). This approach effectively
suppresses spurious motion-related differences across subjects. However, it only ‘corrects’
the data to the extent that the assumed relationship between a summary QC measure and
spurious influence on outcomes exists. If only linear effects exist, then linear regression
should completely correct spurious differences. If any non-linear (or unmodeled) effects
exist, the correction will be incomplete. Also, since summary QC measures may covary with
factors of interest, such as age or diagnosis, group-level regression may remove the very
effects that a study seeks to identify. For these reasons it would be desirable to improve
subject-level motion correction to the point where group-level regressions are not necessary.

This paper aims to develop methods of motion correction that, applied at the subject level,
eliminate the need for group-level corrections. To develop these methods it is necessary to
better understand the properties of motion artifact. The paper is therefore composed of 3
parts. Part I aims to create a fuller understanding of motion-related artifact, focusing on the
types of signal intensity changes it produces. Part II examines how motion impacts RSFC
correlations. Part III takes the lessons of the previous parts and describes processing
strategies that generate results in which motion-related influences are no longer detectable.

To orient the reader, we preview several main results here. In Part I, we observe that motion-
induced signal changes are highly variable and may persist tens of seconds after a motion.
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We demonstrate the modest efficacy of a variety of motion-related regressors but the high
efficacy of global signal regression in reducing such intensity changes. In Part II we find
that RSFC correlations are systematically impacted by volumes acquired during and up to
~10 seconds after movement. We find that multiple QC measures can identify compromised
volumes, but that reductions in outlying QC values over processing are partially cosmetic,
i.e., some ‘improved’ volumes continue to harbor motion-related effects. We propose
methods to identify values at which a QC measure begins to index spurious changes in
RSFC correlations. In Part III we demonstrate that censoring approaches, when applied
throughout a processing stream, can reduce spurious motion-related group differences to
chance levels. Table 1 outlines several of the chief objectives and findings of the paper.

Several remarks about the scope of this paper will help to frame the analyses to come.

First, this paper is concerned with post-hoc correction of data. Although we are optimistic
about improvements in MRI sequences and techniques at data acquisition with regard to
motion correction (e.g., (Bright and Murphy, 2013; Kundu et al., 2012)), our focus is on data
that have been already acquired.

Second, we have neither external measures of motion nor physiological measures such as
respiratory, cardiac, or end-tidal CO2. An absence of such measures is characteristic of
many existing (and likely future) datasets, including many publicly available datasets, and
our data are representative of many datasets that the field would like to utilize. For artifact
reduction, we are limited to data-driven methods such as (1) removal of signals derived from
matrix decomposition (e.g., ICA), (2) removal of signal variance associated with various
brain compartments (e.g., white matter signal), or (3) entirely discarding problematic data
(volume censoring). Matrix decomposition techniques are powerful tools to isolate nuisance-
related signals but the extent of their success depends upon the correct classification of the
resulting components into signals of interest or non-interest. This paper will focus on
nuisance regressions (of motion estimates and brain compartment signals) and on the
censoring approach.

Third, given the many approaches to processing RSFC data, we have tried to make our
results as generally informative as possible. The first section of the paper describes data
before artifact reduction and thus provides a picture of the types of problems that motion
may create in any dataset. Much of the methodology in this paper is applicable to any BOLD
dataset, regardless of how it was acquired or prepared. Several of our analyses use censoring
to characterize motion artifact, but other analyses do not. Most analyses are performed with
and without global signal regression (GSR), since GSR is both a contested step in processing
(Fox et al., 2009; Murphy et al., 2009) and an effective procedure for removing motion
artifact (Satterthwaite et al., 2013; Yan et al., 2013). In this manner, our findings should
hopefully apply to a wide variety of processing streams.

Methods
Subjects

This paper studies 160 healthy subjects in 4 cohorts of 40 subjects: 3 adult cohorts (high,
medium, and low motion, binned by mean framewise displacement (FD)) and a child cohort.
The datasets were selected from a larger pool for their ability to undergo various volume
censoring strategies while still retaining at least 125 volumes of data (~ 5 minutes or more).
The cohorts are sex-matched. The high-motion adult cohort and child cohort are matched on
all QC measures and are significantly different from the medium- and low-motion adult
cohorts on all QC measures (see Figure S1, Table S1).
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All subjects were recruited from the Washington University campus and the surrounding
community. All subjects were right-handed, native English speakers, reported no history of
neurological or psychiatric disease, and were not on psychotropic medications. All subjects
(or their guardians) gave informed consent and were compensated for their participation in
accord with institutional and national guidelines.

Data Collection
All subjects were scanned in the same Siemens MAGNETOM Trio 3T scanner with a
Siemens 12 channel Head Matrix Coil (Erlangen, Germany). A T1-weighted sagittal MP-
RAGE was obtained (TE = 3.06 ms, TR-partition = 2.4 ×, TI = 1000ms, flip angle = 8°, 127
slices with 1×1× 1 mm voxels). A T2-weighted turbo spin echo structural image (TE = 84
ms, TR = 6.8 s, 32 slices with 2×1×4 mm voxels) in the same anatomical plane as the BOLD
images was also obtained for use in image registration.

RSFC BOLD runs were obtained from subjects visually fixating a white crosshair on a black
background. Subjects were asked to stay still, to stay awake, and to watch the crosshair.
Functional images were obtained using a Siemens product gradient echo echo-planar
sequence. The 160 subjects were pooled from different studies, resulting in slight
differences in the parameters for BOLD acquisition, noted below. A representative set of
parameters is: TE = 27 ms, flip angle = 90°, 32 contiguous interleaved 4 mm axial slices,
with in-plane resolution = 4×4 mm. The TR lengths varied slightly: 158 subjects have TR =
2.5 s, 2 subjects have TR = 2.2 s. Most functional data were acquired in runs of 132
volumes, though some runs were longer or slightly shorter depending on the original study
from which a subject was taken. Most subjects contributed 2 or more runs of data.
Accordingly, the number of volumes available, typically several hundred, varied across
subjects (mean ± s.d: 346 ± 136; range: 184-724; see Table S1).

fMRI Pre-processing
For the purposes of this paper we distinguish between ‘fMRI pre-processing’ and ‘functional
connectivity processing’ (Figure 1). This distinction separates relatively common steps taken
by many investigators to preprocess fMRI data for any purpose (e.g., rigid body motion
correction) from the highly variable steps that can be taken to prepare data for functional
connectivity analyses.

For fMRI pre-processing, functional images underwent (i) slice-time correction, i.e., sinc
interpolation to temporally align each slice to the start of each volume, (ii) rigid body
realignment to correct for head movement within and across runs, and (iii) within-run
intensity normalization, that is, scaling the intensity across all voxels and all magnetization
steady-state volumes to achieve a mode value of 1000. In all Figures, BOLD data are
presented in a mode 1000 scale (10 units = 1% BOLD). Atlas transformation of the
functional data was computed for each individual via the T2-weighted and MP-RAGE scans.
Each run was then resampled in atlas space on an isotropic 3 mm grid combining
realignment and atlas transformation in a single interpolation (Shulman et al., 2010).

Functional Connectivity (RSFC) Processing
After fMRI pre-processing, further steps were taken to prepare these data for functional
connectivity analysis (Figure 1). Data from various steps in processing will be illustrated in
the paper. These steps included (i) demeaning and detrending across each run, (ii) regression
of nuisance variables across all runs (various regressors were used and will be described
below), (iii) frequency filtering of the data using a zero-phase 2nd order Butterworth filter
with a pass-band of 0.009 to 0.08 Hz, and (iv) spatial blurring using a Gaussian filter with 6
mm FWHM. The data presented in Parts I and II underwent this procedure. In Part III, this
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procedure was performed to yield QC measures, then temporal masks were formed using the
QC measures, and then the procedure was re-performed with volume censoring and data
replacement by interpolation.

Regressors
Various combinations of nuisance regressors were used in the multiple regressions and are
described for each analysis. Motion estimates (R = [X Y Z pitch yaw roll]) were the
detrended realignment estimates from fMRI pre-processing. Their derivatives (R´) and
squares (R2) were also used as regressors. Our lab has historically used R and R´ as nuisance
regressors ([R R´] = 12 motion related regressors). This paper also examines two sets of
motion regressors derived by Volterra expansion (Friston et al., 1996): [R R2 Rt-1 R t-12],
where t and t-1 refer to the current and immediately preceding timepoint (24 motion-related
regressors) and [R R2 Rt-1 R t-12 Rt-2 R t-22] (36 motion-related regressors). Note that the 24-
motion-parameter expansion is the same one used in (Satterthwaite et al., 2013) and (Yan et
al., 2013), but that the 36-motion-parameter set in this report is not the same as the 36
parameters used by Satterthwaite and colleagues (their 36 regressors were the 24 motion-
related regressors and 12 tissue-based regressors). Tissue-based signals were also used as
nuisance regressors and were calculated as the average signal across voxels within a
particular spatial mask: an eroded ventricular mask for the CSF signal (CSF or V), an eroded
white matter mask for the white matte signal (WM), and the whole-brain mask for the global
signal (GS). In all cases, when a tissue-based signal was used as a regressor, its first
derivative, computed by backwards differences, was also used.

Regressions using temporal masks
Temporal masks are incorporated into demeaning and detrending and multiple regressions in
Part III. If data were censored during demeaning and detrending or multiple regression, the
following procedure was used: (i) ‘bad’ timepoints were censored from the regressors and
BOLD data, (ii) the remaining ‘good’ regressors were standardized (zero-mean, unit
variance) and detrended, (iii) a least-squares fit of ‘good’ regressors to the ‘good’ data
generated beta values, (iv) regressors from all timepoints (‘good’ and ‘bad’) underwent the
same transformation that defined the ‘good’ standardized regressors, (v) the ‘good’ betas
were applied to regressors from all (‘good’ and ‘bad’) timepoints to generate modeled signal
values at all timepoints, and (vi) residuals were calculated for all timepoints as observed
minus modeled BOLD values. Thus, only ‘good’ data contributed to betas but residuals were
calculated for all timepoints, yielding continuous timeseries. The betas and residuals at
‘good’ timepoints generated by this procedure are theoretically identical to those obtained
using ‘spike regressors’ (Lemieux et al., 2007).

Interpolation using temporal masks
In Part III, potentially compromised data were replaced after the multiple regression but
prior to frequency filtering. A least-squares spectral decomposition of the uncensored
(‘good’) data was performed and this decomposition was used to reconstitute data at
censored (‘bad’) timepoints. To compute the frequency content of uncensored data, we
applied a least squares spectral analysis adapted for non-uniformly sampled data, as
described in (Mathias et al., 2004), using a method based on the Lomb-Scargle periodogram
(Lomb, 1976). A more detailed and formal description is provided in the Supplemental
Materials. Thus, the ‘good’ data defined the frequency characteristics of signals that then
replace the ‘bad’ data. Figure S2 illustrates this procedure for a synthetic signal. The
replaced timepoints almost always have values closer to the signal mean than the original
data, and they thus spread less signal into adjacent ‘good’ timepoints during frequency
filtering (Carp, 2013). These interpolated timepoints are then re-censored following
frequency filtering.

Power et al. Page 5

Neuroimage. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Frequency filtering
Frequency filtering was performed using a first-order Butterworth FIR filter with passband
0.009 to 0.08 Hz in the forward and reverse directions. After filtering, the first and last 15
TRs of each run were ignored.

Quality Control (QC) Measures
The QC measures employed here are largely those used in (Power et al., 2012). Figure 2
shows QC measures for 2 subjects. For all realignment-estimate-derived calculations,
rotational displacements were converted to translational displacements by projection to the
surface of a 50 mm radius sphere.

RMS motion and RMS d/dt motion
These are the root mean squared values of the detrended realignment estimates and their
derivatives across all timepoints.

Framewise displacement (FD)
This measure indexes the movement of the head from one volume to the next, and is
calculated as the sum of the absolute values of the differentiated realignment estimates (by
backwards differences) at every timepoint (Power et al., 2012). FD for the first volume of a
run is 0 by convention. The purpose of this measure is to index head movement, not to
precisely calculate or model it.

Absolute displacement
(calculated separately for rotation and translation): These measures index the absolute
displacement of the head from the origin position at every timepoint. The translational
absolute displacement is the sum of the absolute values of the X, Y, and Z estimates for a
given volume. The rotational version is the sum of the absolute values of the displacements
in pitch, yaw, and roll. The purpose of this measure is to index head absolute position, not to
precisely calculate or model it.

DVARS (DV)
This measure indexes the change in signal intensity from one volume to the next, and is
calculated as the root mean square value of the differentiated BOLD timeseries (by
backwards differences) within a spatial mask at every timepoint (Smyser et al., 2010). DV
for the first volume of a run is set to zero by convention. This paper usually presents DV
calculated over the whole-brain mask but it can be calculated over any collection of voxels.
Gray matter DV (DVGM), which closely parallels whole-brain DV (DVGS), is presented at
several points in the manuscript where indicated (e.g., after global signal regression has
made it pointless to plot mean global signal but still informative to plot mean gray matter
signal, we use DVGM instead of DVGS so that the same set of voxels is being examined.)

Standard deviation (SD)
This measure is the standard deviation (across space) of the BOLD signal across all voxels
within a spatial mask at every timepoint. As for DV, SD from a whole-brain mask is
typically presented unless specifically indicated.

Spatial Masks
Each subject’s MP-RAGE underwent segmentation by FreeSurfer (version 5.0). Segments
corresponding to the lateral ventricles, the white matter, the gray matter, and all within-brain
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voxels were extracted. 5 versions of the white matter and ventricular masks were formed:
uneroded, and erosions 1–4 times. All masks were resliced to 3 mm isotropic dimensions to
match the BOLD data. Maximal erosion (4×) masks were preferred; if maximal erosion
yielded empty masks, lesser erosions were progressively considered until a mask with
qualifying voxels was found. This relaxation occurred infrequently for white matter masks.
Erosions of 1 were often used for CSF masks. These masks were used to extract nuisance
signals, to calculate DV and SD within the masks, and to define the voxel timeseries
displayed in Part I.

Regions of Interest
264 regions of interest (ROIs) are examined in this paper, identical to those used in (Power
et al., 2012). These ROIs represent our current best estimates of the center coordinates of
brain areas and nuclei, and derive from the results of many task fMRI meta-analyses and a
resting state parcellation strategy (Cohen et al., 2008). ROIs are modeled as 10 mm diameter
spheres centered on the coordinates reported in (Power et al., 2011). ROI timecourses are
calculated as the average value across voxels within the ROI.

Correlation Calculations
All correlations are calculated as the Pearson correlation between timeseries. Arithmetic and
statistical calculations use Fisher z-transformed values. Reported correlations are Pearson’s
r.

Methodological changes from our previous report
Three methodological differences from our previous report on motion artifact (Power et al.,
2012) should be noted.

First, the order of processing operations has changed: we now regress nuisance signals, then
perform frequency filtering, then perform spatial blurring. Previously we had regressed
nuisance signals after frequency filtering. Either order of operations is acceptable, but if
regression takes place after frequency filtering, the nuisance regressors should also be
filtered so that residuals maintain the proper frequency content (i.e., so that high-frequency
regressors do not reintroduce high-frequency content into low-frequency data). In our initial
report, although our tissue-based nuisance signals were frequency filtered, our realignment
estimates had not been filtered and therefore could have reintroduced high-frequency signal
related to motion into our data. Our observations and conclusions are essentially unchanged
after altering our procedure.

Second, the slice-timing correction in our initial report was incorrect because we were
unaware that on our Siemens MAGNETOM Trio, A Tim System 3T scanner, interleaved
acquisitions began with the second slice (but only if the total number of slices is even).
Compensation for asynchronous slice timing is now correct. As will be seen, our previous
results and conclusions are unchanged after implementing proper slice timing correction.

Third, we now use a different and much larger group of subjects than in our previous report.
These subjects, though they clearly exhibit motion artifact, are a selective set of subjects:
they were selected out of a larger pool of subjects for the ability of their data to withstand
various volume censoring strategies, including very stringent ones, while retaining at least 5
minutes of data. Our previous dataset could not have withstood such measures and was a
higher-motion dataset.
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Results
Part I: Understanding BOLD motion artifact and its relation to QC measures

The overall processing strategy—An overview of the processing strategy is shown in
Figure 1 (discussed in Methods). This section does not involve scrubbing or iterative
processing. This section describes how motion manifests in signal intensity, the extent to
which regressions remove motion-related signal, and how QC measures reflect movement-
associated signal changes.

In this section, Figures 2–7 contain 14 single-subject illustrations of motion effects in BOLD
data. We focus on single-subject data because motion’s effects are highly variable and are
therefore incompletely communicated by peri-motion histograms or modeling. Importantly,
to impact correlations between timeseries, motion-related signal changes do not need to be
highly stereotyped, they only need to be shared across voxels. Highly variable motion-
related changes can alter correlations just as well as stereotyped motion-related changes. An
understanding of the variety and magnitude of signal changes that motion can produce is
quickly developed by studying individual subjects. Important aspects of Figures 2–7 are
presented for each subject used in this report in a Supplemental Cohort Illustration. We
encourage readers to consult this resource to develop a fuller understanding of motion-
related signal changes. The Supplemental Cohort Illustration is available at
www.nil.wustl.edu/labs/petersen/Resources.html.

Quality control measures—Figure 2 shows several QC measures in 2 subjects (subjects
1–40 are children, 41–80 are high-motion adults, 81–120 are medium-motion adults, and
121–160 are low-motion adults). Vertical lines denote boundaries between concatenated
runs. Spikes in the red FD traces indicate head movement, and elevations in the dotted
absolute displacement traces indicate that the head is shifted away from the origin. The
subject at left is generally still except for a portion of the 3rd run, whereas the subject at right
moves more frequently. These subjects are representative of the low- and high-motion adult
cohorts (see Figure S1 for mean FD distributions in each cohort).

The bottom two panels show signals and signal-derived QC measures, calculated within a
whole brain mask in demeaned and detrended data, prior to nuisance regression. Other than
realignment, nothing has been done to counter motion-related artifact. The correspondence
of the blue DV trace to FD is evident (DV-FD correlation across subjects (mean ± s.d.): 0.69
± 0.38). DV does not so closely reflect absolute head position (DV-abs. trans.: 0.32 ± 0.26;
DV-abs. rot: 0.25 ± 0.23). The bottom panel shows the global signal and the SD trace. The
SD trace bears considerable similarity to the FD signal (SD-FD: 0.52 ± 0.27), but also
reflects absolute head position (black arrows; SD-abs. trans: 0.65 ± 0.31; SD-abs. rot: 0.54 ±
0.34). The black trace of the global signal shows instances of motion-related signal changes,
sometimes manifested as decreases in signal intensity. Throughout the paper, when possible,
the same QC measure color code will be used: red for FD, blue for DV, and green for SD.

Cohort properties; rationale for cohort composition—Figure S1 and Table S1
show the ages, total quantities of data, summary QC values, and statistical comparisons of
the cohorts. Cohorts 1, 2, and 4 (children, high-motion adults, and low-motion adults) are of
principal interest. Data from cohort 3, the medium-motion adults, are also shown but will be
less emphasized. The 3 principal cohorts do not differ in the amount of data available. The
children and high-motion adults do not differ statistically on any summary QC measure,
though there are trends for the children to have higher RMS d/dt motion (p=0.08) and for the
high-motion adults to have higher mean SD values (p=0.15). These two high-motion cohorts
differ from the low- and medium-motion adult cohorts on every QC measure.
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These datasets are formed for particular reasons. First, the children and high-motion adult
cohorts are useful datasets for observing effects of motion because motion is so prevalent.
Second, if motion related effects are dose-dependent, they should be similar in children and
high-motion adults, modest in the medium-motion adult cohort and minor in the low-motion
adult cohort. Third, if we assume that above-chance differences between the adult cohorts
are due solely to motion, then an effective processing strategy for removing motion-related
effects should reduce any differences between these cohorts to chance levels. On this
assumption, above-chance differences between the adult cohorts after a motion correction
strategy reflect inadequate motion correction and the need for further work. An alternative
hypothesis is that there exist endophenotypes detectable with resting state fMRI in people
predisposed to move, and that a perfect motion correction strategy would enable detection of
true and meaningful residual group differences related to this endophenotype. We cannot
exclude this latter hypothesis. But we consider the former scenario much more likely and in
Parts II and III we will work toward reducing group differences between the low- and high-
motion adults to chance levels. To the extent that this effort is successful, residual
differences between children and adults can be interpreted as developmental and not
movement-related.

The nature of motion-related variance—The next 3 Figures summarize the effects that
motion can produce using single-subject data from 12 subjects. The subjects that are
presented were selected for their relatively clear illustrations of particular motions or signal
changes, but they are representative of the entire dataset (see Supplemental Cohort
Illustration). All illustrated data have been demeaned and detrended but have not undergone
any further processing. As such, they illustrate the types of spurious variance that
investigators seek to remove during functional connectivity processing. The top panels
depict QC measures discussed previously. The third panels show voxel timeseries from
voxels within the gray matter mask (GM, gray bar). Timeseries for all voxels within the
mask are presented (timeseries are displayed in the order of the image but Matlab
automatically downsamples the displayed data depending on plot sizing; several hundred
voxelwise timeseries are visible). The fourth panel shows voxel timeseries from the eroded
white matter (WM, top, white bar) and eroded ventricular masks (bottom, small yellow bar).

In relatively still subjects (Figure 3), the FD traces are flat and there is no indication from
any QC measure that the data are disrupted anywhere in the scan. Nevertheless, fluctuations
in signal intensity are broadly shared across voxels. These global fluctuations presumably
reflect some combination of neural activity and non-motion-related artifact, such as
respiratory or cardiac effects or other influences. To the extent that these global fluctuations
are represented in white matter and ventricular signals, they presumably do not represent
neural activity.

In subjects who move intermittently (Figure 4) and return to their original position, the QC
traces are mostly flat except for brief excursions from the baseline. The impact of motion is
variable. Some movements (white arrows) produce, across most voxels, an increase then a
decrease in signal, lasting many TRs (see the 10 TR scaling bar in the white matter). Other
movements (black arrows), appear not to produce any marked effect. Still other movements
(yellow arrow), produce increases in signal. Other movements produce predominantly
decreases (purple arrow). Not only the sign, but also the duration of intensity changes can
vary. In the subject in the bottom left, a large movement (cyan arrow) produces a brief but
marked disruption in signal, whereas in the subject in the bottom right, several modest
movements produce prolonged disruptions.

Some subjects move and remain displaced from the origin, as shown by sustained elevations
in the absolute displacement traces in Figure 5 (dotted dark lines). These movements
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produce long elevations or depressions of signal intensity that appear as banding patterns in
the voxel intensity traces. The direction of the changes is sometimes seemingly uniform
(black arrow), or sometimes different at different voxels (white arrows). These sustained
shifts in intensity caused by shifted head position are qualitatively different than the
intensity disruptions resulting from head motion.

It is visually evident that signals in the gray matter, white matter, and ventricular
compartments often resemble each other during motion. Figure 6 shows, for 160 subjects,
the signal correlations between and within different tissue compartments. GM-WM and
GM-CSF correlations are typically positive, centered about r = 0.3 and r = 0.4, respectively.
Each of these compartments contributes to the global signal, but the global signal is most
strongly correlated with the gray matter signal. The similarity of signal between brain
compartments, and of signals within the gray matter to other signals within the gray matter,
is higher in subjects with higher FD values (except GS-GM correlations, which are at
ceiling). Signal similarity is not as tightly related to RMS motion, which reflects head
position in addition to head motion.

On the efficacy of motion-related and tissue-based nuisance regressors—
Motion frequently produces fairly uniform effects across most voxels in the brain. This
observation suggests that regressors derived from gray matter or all brain voxels should
effectively reduce this variance. Figure 7 demonstrates this principle. Above the black line,
the pre-regression data of 3 subjects from Figures 3–5 are reproduced. Below the black line,
the gray matter voxel timeseries after several different regressions are displayed. Motion
regression alone, even if expanded to 24 or 36 waveforms, does not eliminate the bulk of
motion-related artifacts. Some artifacts are visibly improved by additional regressors (black
arrows) but others remain largely uncorrected (white arrows). Relatively clean signals are
only obtained when the global signal and its derivative are included in nuisance regressions.
However, QC traces computed after all nuisance regressions indicate residual artifact during
periods of motion. This issue will be addressed in Parts II and III of the paper.

An implication of these results is that the mean WM and CSF regressors are less useful than
one would hope since they were included in all regressions. Figure S3 reproduces Figure 7
without any tissue-based regressors. When these Figures are compared, one is struck by the
modest changes that WM and CSF regressors produce. These results are consistent with
previous analyses wherein WM and CSF signals explained little variance in the gray matter
(Jo et al., 2010; Weissenbacher et al., 2009). The modest efficacy of WM and CSF
regressors is consistent with the moderate correlation of the WM and CSF regressors to the
global signal (Figure 6), which is an effective regressor.

Part I discussion: on the nature of motion-related signal changes—Our
observations so far may be summarized as follows. (1) In still subjects, variance that is not
apparently motion-related may be widely shared across voxels, with variable extension to
the white matter and CSF compartments. (2) Signal changes coincident with motion vary in
magnitude, and may be widely present throughout gray matter, and variably, white matter
and CSF voxels. (3) Complex, multi-phasic signal changes often follow head motion. (4)
Shifts in head position cause sustained shifts in image intensity. (5) Phasic head motion
often produces pronounced effects, typically signal decreases, extending over tens of
seconds after motion has ceased (dark vertical bands in Figures 4 and 5).

These signal changes are seen throughout our entire dataset (Supplemental Cohort
Illustration). The types and variety of signal changes just described, including the persistent
post-motion changes, are also seen in data from the Human Connectome Project (not
shown), which is acquired using different sequences on a different scanner and processed
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without slice-time correction using different software. We therefore suspect that the signal
changes we describe are not unique to our data.

Our findings are partially consistent with the observations of Satterthwaite and colleagues,
who reported that motion produces signal decreases throughout the entire brain and that
these effects scale with the size of a movement (Satterthwaite et al., 2013). However, these
authors also reported that signal depressions were largely complete 2 TRs (6 sec) after a
movement. We find, instead, that signal changes may persist for tens of seconds after a
movement and are not necessarily signal decreases. The discrepancy between our reports
may arise because we are visualizing highly variable signal changes across motions, time,
and voxels, whereas Satterthwaite and colleagues were using GLM analyses to identify
stereotyped signal changes coincident with motion. We note that to influence correlations,
stereotyped signal changes are not necessary, only signal changes that are shared across
voxels.

The variety of signal changes underscores the complexity of motion’s effects on BOLD
signal. Shifts in head position (e.g., slow drifts, or rapid motion without return to the original
position) are associated with sustained signal changes that are variable across voxels.
Motions themselves (e.g., head nodding, speech, swallowing, etc.) are associated with a
variety of transient signal changes. The signal changes at each voxel are partially but not
adequately explained by position estimates from the current, preceding, or past 2 TRs (since
regressions fail to completely remove motion-related variance). We speculate that the
variety of changes at a single voxel arises not only from the variety of specific motions, but
also from the voxel’s proximity to various tissue types with different signal intensities and
from spin history effects. Modeling such interactions would be challenging.

Several implications follow from our observations. First, as we noted in our initial report
(Power et al., 2012), motion-induced signal changes are generally not consistent with neural
activity related to motion. Signal changes are seen at almost all voxels in the gray matter and
the direction and duration of these signal changes varies. Further, the signal changes also
occur in white matter and ventricular spaces. Some neural activity must correlate with
motion and it is possible that some motion-related activity is represented in the BOLD signal
during motion, but such neural activity cannot account for the preponderance of signal
changes seen during and after motion. Our perspective therefore differs from that of (Yan et
al., 2013).

Second, because prominent signal changes are highly variable and prolonged, it seems
unlikely that they can be modeled by retrospective techniques based on relatively simple
treatments of realignment estimates, such as regression of current or immediately preceding
motion estimates. Prolonged motion-related effects must account in part for the inability of
any set of motion regressors thus far tested to completely eliminate motion-related variance
(Power et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013). Removal of such prolonged
changes will require more expansive modeling than is typically currently performed, such as
convolution of some (unknown) function with realignment estimates, or regression of
realignment estimates from many preceding timepoints. Signal-based corrections that
capture these prolonged effects may prove effective in removing such variance and should
receive careful attention.

We have attempted several strategies to create larger and more effective sets of nuisance
regressors from the white matter and ventricular voxels, such as subdividing the masks
spatially into small cubes and/or using PCA to select several components that represent most
of the variance within the mask. These efforts have not yielded encouraging results. The
only procedure that produced benefits worth noting was to temporally subdivide these
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nuisance signals (such that, for example, a 200-timepoint signal was represented as 4 50-
timepoint segments). Several versions of this temporal segmentation were examined, all of
which produced modest increases in the ability of timeseries from white matter and
ventricles to remove motion-related variance. However, we ultimately abandoned this
approach because we were concerned about the possible removal of signal of interest that
could occur by chance when using such short timeseries in the regressions.

Part I focused on timeseries. The analyses in Parts II and III focus on correlations between
timeseries. Usually the timeseries will have been fully processed, though some analyses will
examine timeseries at various steps of functional connectivity processing. In future analyses,
the 24-motion-parameter set of regressors will be used. This is because it is likely to be a
standard for the field in the short- to medium-term future given its statistical superiority over
smaller sets of motion parameters (Satterthwaite et al., 2013; Yan et al., 2013). We choose
not to use the 36-motion-parameter set because although it produced modest benefits beyond
the 24-motion-parameter set, it was still inadequate for removing motion-related effects, it
requires an additional 12 degrees of freedom, and it is useful to for the coming results to be
comparable with other recent reports that utilize the 24-motion-parameter set of regressors
(Satterthwaite et al., 2013; Yan et al., 2013). Additionally, most future analyses will include
data processed with and without GSR given the visible efficacy of this regressor (Figure 7)
and the recent reports on its utility for removing motion artifact (Satterthwaite et al., 2013;
Yan et al., 2013). Since the field continues to debate the use of GSR (Fox et al., 2009;
Murphy et al., 2009; Saad et al., 2012), analyses with and without GSR will provide
investigators of all viewpoints with empirical evidence on the efficacy of their preferred
approach to artifact removal.

Part II: Understanding how motion impacts RSFC correlations
It is established that motion produces systematic changes in RSFC correlations (Power et al.,
2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). This section seeks to answer several
outstanding questions related to motion and RSFC correlation structure: (1) whether the
prolonged signal disruptions after motion systematically impact RSFC correlations; (2)
whether absolute head displacement systematically impacts RSFC correlations; (3) whether
stricter censoring thresholds produce greater removal of artifactual RSFC structure; (4)
whether high values on all QC measures identify similar artifactual properties; (5) whether
‘improvements’ in a volume over processing are complete or partially cosmetic (i.e., does a
volume with high DV values before processing but normal DV values after processing now
contribute RSFC structure that resembles ‘random’ data or does it still resemble high-DV
data); and (6) whether a threshold or inflection point can be found in a QC measure, below
which artifactual influences are negligible. The answers to these questions will guide the
formation of subject-level censoring-based strategies of artifact correction in Part III.

In our initial report on motion (Power et al., 2012), to characterize the impact of motion on
correlations, we compared correlations in full timeseries to correlations in timeseries from
which high-motion volumes had been deleted. This censoring procedure was called
‘scrubbing’, a term that refers to the practice of discarding incorrect or untrustworthy pieces
of information. In our initial report censoring was only done during correlation calculations,
but it can be incorporated into data processing steps such as regressions and temporal
filtering (Carp, 2013; Power et al., 2012; Power et al., 2013; Power et al., 2011;
Satterthwaite et al., 2013). Certain characterizations of high-motion data (as in Figure 11B)
cannot be performed if the data have been censored or replaced. Therefore, in this section
we censor only after functional connectivity processing is complete. Iterative processing
with censoring incorporated thoughout the processing stream is described in Part III.
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Several analyses in this section use scrubbing to characterize the impact of particular parts
of data on RSFC correlations. These analyses examine the changes in correlation produced
in all possible pairwise correlations (34,716) between the 264 ROIs reported in (Power et al.,
2011) when particular portions of the data are withheld from correlation calculations.
Across-subject changes in correlation are reported (Δr = mean scrubbed r – mean
unscrubbed r). Within-subject analyses (Δr = mean(scrubbed r – unscrubbed r)) produced
nearly identical results and are not shown. Within-subject analyses that were normalized to
the amount of data removed per subject produced similar results and are not shown. In
subsequent Figures, Δr will be plotted for each pairwise correlation as a function of the
Euclidean distance separating the center coordinates of the ROIs that gave rise to the
correlation.

The temporal extent of motion’s impact on RSFC correlations—The prolonged
signal changes seen in Figure 4 suggest that motion may influence RSFC correlations for
many TRs after the head has ceased moving. To investigate this issue, 8 ‘target’ temporal
masks were formed in each subject. Each target mask identified a particular type of
individual volume, such as volumes prior, during, or after motion. Such masks are illustrated
for 2 subjects in Figure 8A. The ‘target masks’ bar contains 8 rows, each representing a
temporal mask. Rows 1–2 individually identify the 2 TRs prior to motion, row 3 identifies
motion (FD > 0.2 mm), and rows 4–8 individually identify the 5 TRs after motion. A set of
‘positive control’ masks was also created, one for each of the target masks. Each ‘positive
control’ mask removes, within each subject, identical amounts of data by FD rank (e.g., if a
‘target mask’ removed 8 volumes, the corresponding ‘positive control’ mask removed the 8
volumes with the highest FD values in the scan). A set of ‘random control’ masks removes,
for each ‘target mask’ within each subject, identical amounts of data but at random points in
the scan. The ‘positive control’ shows what changes in correlation are possible when
removing a given amount of data (because sometimes very little data is removed), and the
‘random control’ shows that correlation changes are specific to the type of volume identified
by a target mask.

The temporal extent of the influence of motion on RSFC correlations is shown in Figure 8B.
Here, for each of the 8 types of mask described above, the Δr for each pairwise relationship
is plotted by the distance between that pair of ROIs. Without GSR, motion’s influence is
evident in the 4 or 5 TRs (10–12.5 seconds) following a motion. With GSR, motion’s
influence is essentially restricted to the period of movement. These effects were calculated
in all subjects with data removed by a given mask (N = 150); within-subject analyses
yielded virtually identical results (data not shown). An informative feature of these analyses
is that no artifact is seen in the TRs prior to motion, indicating that our gentle (and
symmetric) frequency filtering did not result in noticeable temporal spread of artifact into
adjacent TRs. Figure S4 extends these analyses to the 10 TRs following motion and to
timeseries from various steps in functional connectivity processing (pre-regression, post-
regression, and final timeseries). Similar effects are seen at all stages of processing. These
analyses indicate that, in our data, motion impacts correlations mainly in the 4 TRs (10 s)
after a movement. The analyses in Figure S4 also include a mask that identifies volumes
temporally distant from motion (at least 10 TRs after FD > 0.2 mm) that have absolute
displacements over 0.5 mm. Censoring with this mask reveals no obvious structured
influence of absolute head displacement on RSFC correlations, indicating that the sustained
signal changes produced by absolute head displacement seen in Figure 5 are largely
corrected by existing regression strategies. However, only 20 subjects exhibited isolated
absolute head displacement, and we therefore consider this conclusion to be provisional.

The effect of censoring stringency in different populations—An important
question is the extent to which different populations exhibit motion-related biases in RSFC.
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Relatedly, we have posited that above-chance group differences between high-motion and
low-motion adults are at least partially and perhaps entirely, due to motion. We are therefore
interested in the extent to which different populations display motion-related effects, and the
extent to which various processing strategies reduce group differences.

The effects of lenient (FD > 0.5 mm) and stringent (FD > 0.2 mm) FD-based scrubbing are
shown in Figure 9. With GSR, children display effects at both thresholds, high-motion
adults display effects only at the stringent threshold, and low-motion adults display effects at
neither threshold. Importantly, FD-based scrubbing reduces group differences between the
high- and low-motion adults. This effect is specific to high-FD volumes: random volume
removal produced no such effect. This effect is seen regardless of statistical threshold used
to define group differences, and the selective reduction in group differences is seen in all
comparisons of all adult cohorts (Figure S5).

Without GSR, similar effects are seen as with GSR, except that effects can now be
appreciated in the high-motion adults at lenient thresholds, and in the low-motion adults at
stringent thresholds (the red fringes below the black points in both plots). Here, too, FD-
targeted scrubbing selectively reduces group differences. Note also the scale of group
differences: for a given statistical threshold, using identical temporal masks, the number of
significant differences without GSR is nearly 2 orders of magnitude greater. These findings
hold regardless of statistical threshold or the adult groups compared (Figure S5). The
elimination of group differences by various processing strategies will be revisited in Part III.

On using DV and SD to censor data—FD, DV, and SD are all possible QC measures.
Thus far, we have characterized data using FD. We now turn to the other QC measures,
which differ from FD in important ways. FD is based on realignment estimates and therefore
is unaffected by subsequent processing steps. DV and SD, in contrast, derive from BOLD
intensity, and may evolve through processing (Figure 10). Before processing, DV strongly
resembles FD, but this similarity diminishes with processing (DV-FD pre-regression: r =
0.69 ± 0.34; post-regression: r = 0.23 ± 0.28; post-frequency filtering: r = 0.17 ± 0.27; post-
spatial blurring: r = 0.18 ± 0.25). Some peaks in the DV trace are abolished, others are
reduced, others remain. The same is true for SD values (SD-FD pre-regression: r = 0.52 ±
0.27; post-regression: r = 0.07 ± 0.29; post-frequency filtering: r = 0.07 ± 0.27; post-spatial
blurring: r = 0.04 ± 0.24). Before regression SD traces uniquely display plateaus and
scalloping corresponding to absolute head position, but after regression the scalloping and
plateaus are largely eliminated, possibly reflecting the efficacy of existing regressions in
correcting artifacts attributable to absolute displacement. It may be advantageous to use QC
measures that track evolving data quality rather than an unchangeable trace of head motion.
For example, a temporal mask made using DV after functional connectivity processing
might appropriately retain more (denoised) data than a mask formed using FD (which cannot
reflect denoising).

These considerations prompt two questions. First, do volumes with outlying DV and SD
values produce changes in correlation similar to what has been seen in FD-based analyses?
The right side of Figure 10 answers the first question. Outlying values of either DV or SD, at
any stage of processing, when used to censor fully processed timeseries, produce the
familiar distance-dependent effects seen with FD-based analyses. This is true regardless of
the step in processing at which correlations are calculated (e.g., in pre-regression or pre-
frequency-filtering timeseries; data not shown). Thus, the elevations in QC traces identify
data with similar characteristics at all times.

Second, the reduction or elimination of some peaks in QC traces prompts the question of
whether volumes that ‘improve’ in QC values over processing are truly corrected or whether
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such changes are cosmetic. In other words, if a volume begins with an outlying DV value
and then acquires a more typical DV value later in processing, does that volume’s impact on
RSFC correlations now resemble that of a typical volume (from a period of stillness), or
does it continue to resemble the impact of an outlying volume (from an ‘uncorrected’ period
of motion)?

Full descriptions of the analyses that answer this question are provided in the Supplemental
Materials and Figure S6, but the unfortunate answer is that DV improvements are partially
cosmetic, and data that begin with an elevated value that decreases throughout processing
many still harbor motion artifact (Figure 11A). Initial QC values before processing are
therefore the most reliable indicator of data quality. Because SD reflects absolute head
position, which does not clearly impact RSFC correlations (Figure S4), and because its
motion-tracking characteristics are otherwise largely represented by FD and DV (Figure 10),
we do not pursue further analyses using SD. Thus, the remainder of this paper focuses on
using FD and initial DV values to make processing decisions.

On relating QC values to significant changes in RSFC correlations—Until more
efficacious artifact removal techniques are demonstrated, nuisance regression alone will be
inadequate for subject-level correction of motion’s effects. A further step that can be taken
at the subject level is to entirely discard motion-corrupted volumes. This approach sacrifices
data but it is also effective in eliminating motion-related variance (Power et al., 2012; Power
et al., 2013; Satterthwaite et al., 2013). An important question is: what data should be
censored? We reframe the question as: at what QC values do significant within-subject
changes in correlation become evident?

Full descriptions of the approach and analyses developed to answer this question are
presented in Supplemental Materials and Figure S7. The top panel of Figure 11B shows the
gist of the analyses, wherein a subject’s data are ordered by decreasing quality and the
changes in correlation observed going from the best to the worst data are plotted. Whether
such changes are significant is empirically determined by repeating this procedure with
random orderings of the data (irrespective of QC values). The green points are insignificant
changes in the QC-ordered data, the red points are significant changes, and the black points
are from the random permutations that define empirical significance. When this procedure is
repeated for all 160 subjects the resulting empirical ranks can be plotted as a function of QC
value, as in the bottom panel of Figure 11B. This plot indicates that significant within-
subject changes in correlation are detectable down to FD = 0.15–0.2 mm and are very
pronounced at FD = 0.5 mm.

The analyses shown in Figures 11B and S7 indicate that high, outlying values on QC
measures (e.g., FD = 0.5 mm, or DV = 20) unquestionably are associated with within-
subject elevations in short-distance correlations. Most data have QC values not associated
with such artifactual elevations in correlation (see the cumulative distribution curves, the
black sigmoid trace in Figure11B). On the basis of these results, one could argue that very
strict thresholds, excluding QC values beyond even a hint of a skew (FD > 0.15 or initial DV
> 13) are ideal. Most datasets will not tolerate censoring based on such strict thresholds, nor
it is obvious that this particular analysis should be the only criterion for setting thresholds.
We interpret these results to support the general principle that the stricter one sets thresholds
for censoring, the more one can guard against or eliminate motion-related artifact.

Part II discussion: on motion’s influence on RSFC correlations—The key
observations of this section are: (1) effects of motion manifest in RSFC correlations for ~10
seconds after motion; (2) post-motion effects are essentially eliminated when GSR is
performed; (3) absolute displacement does not appear to produce systematic changes in
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RSFC correlations; (4) stricter censoring thresholds remove larger amounts of distance-
dependent artifact; (5) distance-dependent artifact is present with or without GSR; (6)
motion scrubbing selectively reduces motion-related group differences in adult cohorts; (7)
improved QC values do not guarantee that the data are fully corrected; (8) QC values can be
quantitatively linked to the significance of changes in RSFC correlations, but we are unable
to point to a single value of FD or initial DV as a definitive threshold beyond which data are
compromised – the effect is gradual.

Part III: Processing data in ways that minimize motion-related influences
In this section, we use the findings of Part II to modify our processing stream to more
powerfully suppress motion artifact at the subject level. We assess the ability of this
processing stream to eliminate detectable influences of motion and group differences that
are attributable to motion.

Incorporating censoring into an iterative processing strategy—We now adopt a
strategy where the data are processed as in Parts I and II, then QC measures are derived and
used to form temporal masks, and then the data are re-processed using the temporal masks to
censor data (Figure 1, dotted gray lines). The principal features of the iterative processing
strategy are: (1) censoring is incorporated into demeaning and detrending each run, (2)
censoring is incorporated into the multiple regressions performed across runs, (3) temporal
masks are used to define data that are replaced by interpolation, prior to frequency filtering,
and (4) the interpolated data are recensored following frequency filtering.

In this iterative scheme, 4 steps are used to form the temporal masks used to reprocess the
data (see Figure S8 for an illustration in a single subject). Step 1: volumes with FD > 0.2
mm or initial DV > 20 were censored. Step 2: uncensored segments of data lasting fewer
than 5 contiguous volumes as a result of Step 1 were censored. Step 3: runs with fewer than
50 remaining volumes were entirely eliminated. Step 4: subjects with less than 125
uncensored volumes across runs were eliminated. This procedure eliminated entire runs in 5
children and 2 high-motion adults; 3 children were removed for insufficient remaining
volumes across runs. Overall, 83% ± 17% (range 28% – 100%) of the data were retained
(Figure S8). To investigate the impact of interpolation, the data were reprocessed both with
and without this step. Fully processed timeseries were often similar with and without
interpolation (Figure S9). However, in several instances where motion occurred,
reprocessing without interpolation yielded anomalous timeseries features (Figure S9). These
anomalies occurred because outlying values in the censored timepoints were neither
ameliorated by regression (because they did not contribute to regressor fits) nor were they
replaced by interpolation, and they could therefore spread large-amplitude artifactual signals
into adjacent TRs during frequency filtering. We therefore only focus on data that are
reprocessed including interpolation; hereafter ‘reprocessed’ refers to data reprocessed with
interpolation.

Other criteria could have been used to form temporal masks and some differences with our
previous report should be mentioned. In particular, here we did not augment temporal masks
(expanding them forward and backward in time) because we are principally interested in
results using GSR, which exhibited no impacts of motion on correlations in TRs before or
after motion (Figure 8). Analyses done without GSR may benefit from censoring several
TRs after head movement (such augmented masks are examined where appropriate below).
The requirements for some number of contiguous volumes (Step 2) and a minimum number
of within-run volumes (Step 3) have no particular empirical support. The need for 125
volumes across runs (Step 4) arises from the conventional minimum of ~5 min of data for
computing correlations (Van Dijk et al., 2010).
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Evaluating reprocessed data for evidence of motion artifact—One way of
assessing RSFC data for evidence of motion artifact is to correlate a vector of summary QC
values (e.g., mean FD or RMS motion) with vectors of outcome measures across subjects.
This linear dependence is what is removed by group-level corrections implemented by
linearly regressing summary QC measures out of outcome measures across subjects
(Satterthwaite et al., 2013; Satterthwaite et al., 2012; Van Dijk et al., 2012; Yan et al., 2013).
We refer to these correlations as QC-RSFC correlations.

QC-RSFC correlations across 120 adults are shown for several processing strategies in
Figure 12, using mean FD as a summary QC measure. In unscrubbed data prepared with
GSR, short-distance correlations are positively correlated with mean FD. With scrubbing,
these relationships are reduced, and with reprocessing, they are almost absent. Without
GSR, correlations at all distances are positively related to mean FD and these relationships
can be reduced but not eliminated by scrubbing and reprocessing. Reprocessing data with
temporal masks that also censored the 4 volumes subsequent to FD > 0.2 mm did not alter
results (data not shown).

Between-cohort differences can be reduced to chance levels by scrubbing—
Another way to assess the efficacy of within-subject motion correction is to examine group
differences under various processing strategies. We have created 3 adult cohorts that differ
by mean FD. Comparisons of all groups yield significant group differences (Figure S5). We
now examine the extent to which different processing strategies reduce these group
differences, which are in part, if not entirely, due to motion.

The observed numbers of adult group differences under different processing strategies are
presented in Figures 13 and S10. Null expectations were established by 10,000 permutations
of adult subject identity. In general, scrubbing eliminated many group differences, and
reprocessing further reduced group differences. Without GSR, these steps reduced but did
not eliminate group differences. With GSR, reprocessing reduced group differences to
chance levels at most statistical thresholds (in 8 of 9 analyses, Figure S10).

These results indicate that within-subject corrections may be capable of adequately
correcting for motion without a need for group level correction. It is possible that other
versions of censoring would outperform the current approach. Indeed, since this is the first
attempt we have made at a comprehensive approach to censoring, it would be surprising if
the approach could not be improved. We regard these analyses more as proof-of-principle,
and an adequate strategy, than as a demonstration of a fully optimized processing strategy.

Some limitations of group-level correction—The present work has been motivated in
part by a desire to avoid some of the drawbacks of group-level regression. These drawbacks
were noted in the Introduction and are now made more explicit.

The chief drawback of group-level regression is that it will tend to remove effects that
covary with a factor of interest if the factor of interest covaries with motion (e.g., if a
correlation indexes ADHD severity but ADHD severity correlates with motion, group-level
motion correction can reduce or eliminate the diagnostic utility of that correlation).

In the current study, 3 adult cohorts have been formed by binning subjects by mean FD. If
we were to perform across-group regression of mean FD in these cohorts, regression would
tend to remove all group differences, whether “real” (possibly motion-related
endophenotypes) or motion-related (since all correlations are influenced by motion, Figure
12). Figure 14A illustrates this effect using modeled data. In all cases group differences are
eliminated by across-group regression, though this was appropriate only in the top row.
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Therefore, in the current data, across-group regression is of little help in selectively
correcting group differences due to motion.

Within-group regression may, in certain circumstances, recover “real” group differences.
For instance, in the model data of Figure 14A, “real” differences could be recovered at the
intercept by within-group regression. This is possible in the model data because we designed
the data and know that its properties allow successful group correction. We examine below
whether real data possess similar properties that would enable successful within-group
regression.

Within-group regression in the model data works because the within-group rise of RSFC as
a function of FD is linear and identical in both groups (the QC-RSFC betas are identical).
However, if the data had been constructed such that the QC-RSFC betas differed between
groups, another analyst would be unable to determine whether the observed difference in
betas were due to 1) non-linearity in QC-RSFC relationships across the QC range, 2) an
interaction of some factor of interest with the QC measure (e.g., if ADHD severity
modulated correlations but also covaried with FD, QC-RSFC slopes could differ between
controls and ADHD patients), or the fact that 3) since FD summarizes several types of
motion, cohorts that have similar FD values may differ in the underlying types of motion
and therefore exhibit different QC-RSFC relationships. Importantly, even if the cohorts were
well matched for FD (unlike the model data or the 3 FDbinned adult cohorts of this report),
these concerns would still be relevant: the 2nd and 3rd concerns could still cause differential
betas in FD-matched groups, and the 1st concern could undermine the accuracy of the
calculated residuals over any FD range if the QC-RSFC relationship is non-linear.

To assess whether within-group regression might be a promising option for correcting
motion-related influences in our real data, we examined whether FD-RSFC relationships
were linear and similar in each of the adult cohorts. We calculated QC-RSFC betas for all
34,719 correlations across all 120 adults (black line), in each of the 3 40-subject FD-binned
adult cohorts used throughout this paper (red lines), and in 3 randomly-formed cohorts of 40
adults that have indistinguishable means and ranges of mean FD (green lines). Figure 14B
plots these linear fits for 3 randomly selected correlations and Figure 14C shows the betas
found at 100 randomly selected correlations. The fits within subsets of the FD range are
considerably more variable than the fits found across the entire FD range. Such variability
could arise from noisy estimates due to the truncated FD ranges represented in each adult
cohort relative to random subsets of the entire cohort, or it could reflect non-linearity in QC-
RSFC relationships.

We have viewed hundreds of these plots and in a non-trivial number of cases it seems that
QC-RSFC relationships are not just noisy but are actually non-linear. For example, in the
middle plot in Figure 14B, residuals from the ‘all adult’ fit would be skewed negatively at
low FD values and then positively in middle FD values. Consistent with this impression,
across all 34,719 correlations, the relation between FD and observed RSFC values tends to
be strongest across low motion subjects and weaker across medium and high motion
subjects. This is reflected in the beta histograms of Figure 14D, where the betas are right-
shifted for the low-motion cohort relative to the other cohorts. This result suggests that in
many correlations we cannot assume a linear QC-RSFC relation across the range of our QC
measure. This finding calls into question the accuracy of the residuals obtained after
regression across all subjects (the black or green lines), and it also indicates that in real data,
within-group regression will obtain differential QC-RSFC betas in the adult cohorts (red
lines) and is therefore unlikely to produce the desired types of corrections illustrated in
Figure 14A.
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Discussion
Important points from Parts I and II were discussed at the close of each section. This
Discussion therefore focuses on the results of Part III and the implications of the report as a
whole.

On the use of group-level correction
If GSR (or some equivalently effective subject-level correction) is not performed, some
other technique is needed to control for motion-related group differences. Group-level
regression has been proposed as a corrective measure (Satterthwaite et al., 2012; Van Dijk et
al., 2012; Yan et al., 2013). It is important to note that QC-RSFC betas differ at different
portions of the mean FD range. In the current data, this nonlinearity would cause mean FD,
for a given pairwise correlation, to act differently as a regressor in the different adult
cohorts, since the cohorts occupied different portions of the mean FD range. If within-group
regression is performed, it is therefore advisable to match cohorts not only on mean QC
values, but also on ranges of summary QC values in order to (presumably) obtain
homogeneity of regression slopes. Even so, depending on the range of motion, although a
linear fit may be obtained, the underlying data may not actually be linearly dependent on
motion, and it is also possible that differential betas will still be found even in well-matched
groups (concerns 2 and 3 above).

On the implementation of censoring
Several groups have found a benefit of censoring high-motion data (Power et al., 2012;
Satterthwaite et al., 2013; Yan et al., 2013). This benefit accrues because all nuisance
regressions thus far examined have failed to adequately model or remove motion-related
variance. Until improved motion correction strategies are devised, censoring will be a useful
tool for reducing or eliminating motion-related variance in resting state timeseries.

It is important to recognize that some minimum amount of data must remain after censoring.
The field accepts ~5 minutes of data as an adequate starting point for RSFC analyses (Van
Dijk et al., 2010). Accordingly, we required that 125 volumes (5.2 min) remain after
censoring for inclusion in our analyses. Because we started with several hundred volumes of
data in most subjects, this requirement was easily met, and we typically had several hundred
volumes of data remaining in our subjects even after strict censoring strategies.

As noted in the Introduction, the datasets included in this study were chosen for their ability
to withstand such strict censoring strategies. In this paper, few subjects were eliminated in
any analysis because of this selection bias. In other completed and ongoing studies we do
eliminate subjects: in studies of normal adults, we eliminate perhaps 10% of our subjects; in
pediatric and clinical studies, the proportion can exceed 30%. This loss of subjects is
regrettable but difficult to avoid if within-subject correction is to be used. We have, over the
last two years, begun to collect more resting state data from each subject, in longer runs, so
that more subjects qualify for correction by censoring.

We do not advocate relaxing the quantity requirement much below 125 volumes (~5 min) in
order to salvage subjects. Removing timepoints increases the sampling error of estimated
correlations. In the scrubbing analyses, the addition of white noise by censoring is illustrated
by the random Δr analyses that yielded a Gaussian distribution of black points centered on
zero.

A related issue is how to deal with degrees of freedom when censoring, since the number of
timepoints contributing to outcome measures typically differs across subjects after
censoring. One way to address this problem is to reduce all temporal masks to the same
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length (e.g., the minimum length found across subjects in a study). We have found that such
‘trimming’ of temporal masks can have an impact when techniques such as multivariate
pattern analysis are used to classify individuals that differ in the amount of data available
(unpublished observations). In other group-level applications, such as mean seed maps or
mean pairwise correlations, especially when calculated over many subjects and in datasets
with many hundreds of post-scrubbing volumes in most subjects, such ‘trimming’ appears to
make little difference. For example, reanalysis using trimming (to 126 volumes) made no
difference in the group difference results of Figure 13 (data not shown). The additional
removal of volumes must be balanced against the degrees of freedom available in a dataset
and the degrees of freedom required by a processing stream (which is influenced by
autocorrelation, nuisance regression, the presence and type of frequency filtering, etc).

Another issue worth mentioning is the interaction of temporal dynamics with censoring. The
detection and characterization of dynamic states in resting state MRI is an increasingly
examined topic (Chang and Glover, 2010; Smith et al., 2012), and some objections to
censoring have been raised on the grounds that censoring might decrease contributions to
correlations from certain transient states that are associated with motion. In a sense, this
concern is valid: motion could be viewed as a ‘state’ in which short-distance correlations are
increased relative to long-distance correlations. Our opinion, guided by data such as that
shown in Figures 3–5 and the Supplemental Cohort Illustration, is that a motion-associated
state, if it exists, is not a state that can be meaningfully examined with fMRI.

On anticorrelations observed under different processing strategies
Different processing strategies yield different distributions of correlations, changing the
inferences investigators might draw about brain organization. Figure 15A presents the
264×264 mean correlation matrices in each adult cohort (rows) under different processing
strategies without GSR (columns). Scanning down the first column, it is evident that the
low-motion cohort displays more negative correlations than the medium-motion cohort, and
similarly that the medium-motion cohort displays more negative correlations than the high-
motion cohort.

This pattern is easily appreciated in histograms of cohort correlation values (Figures 15B).
Figure 15C shows that these negative correlations prominently involve the posterior midline
and angular gyrus, locations associated with the default mode network. Scanning across the
first row of Figure 15A, it is evident that more successful motion correction also produces
leftward shifts in correlation distributions in the high-motion cohort, a shift shown in Figure
15D. Thus, the presence or absence of negative correlations in a dataset prepared without
GSR depends, among other things, on the extent of motion in the data, and the extent to
which effects of motion are corrected.

Correlations observed with and without GSR are distinct quantities that require different
interpretations (since correlations after GSR are effectively partial correlations, as discussed
below). Correlations with and without GSR are therefore not directly comparable in a
statistical sense. Nevertheless it is worth empirically noting that the strongest correlations
observed without GSR tend to also be the strongest correlations observed with GSR, and
that the most negative correlations observed without GSR tend to be the most negative
correlations observed with GSR (Figure 15E,F). Thus, an analysis based on matrices to
which a high threshold (such as examining the top 5% or 10% of correlations) has been
applied will likely yield similar results with or without GSR, whereas an analysis based on
the full correlation matrices may yield less convergent results under different processing
strategies.
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On the benefits and drawbacks of global signal regression
From a perspective of eliminating artifactual variance, especially motion-related variance,
GSR is unquestionably powerful. However, GSR is a contentious step in processing
(Anderson et al., 2011; Murphy et al., 2009; Saad et al., 2012). Investigators must therefore
weigh the benefits and drawbacks of GSR when deciding how to analyze their data.

Historically, the first objection to GSR was that it induces artifactual anticorrelations
(“creates anticorrelations where none exist”) (Murphy et al., 2009). Recently, acquisition of
RSFC and ECoG data in several patients has established that anticorrelations in the resting
human brain are of neural origin, and that GSR improves the correspondence between the
anticorrelations seen with ECoG and those seen with RSFC (GSR also improves the
correspondence of positive correlations) (Keller et al., 2013). Further, the present analyses
show that RSFC anticorrelations, obtained without GSR, are more evident in subjects with
less motion artifact. Thus, the complete or relative absence of anticorrelations may relate to
the extent of artifact in a dataset. That the brain exhibits true anticorrelations seems to be
well established at this point.

Regardless of the presence of ‘true’ anticorrelations, it is also true that global signal
regression imposes a substantial negative bias on computed correlations because correlations
must be approximately zero-centered (Fox et al., 2009). When such biases arise by removing
shared artifact or truly shared neuronal variance, GSR increases the specificity of
correlations in the residual data. As this paper has shown, much globally shared variance is
indeed artifactual. Further, Scholvinck and colleagues have found electrophysiological
evidence for widely shared neural activity at rest in non-human primates (Schölvinck et al.,
2010). To the extent that global signal regression removes artifact and truly shared neural
variance, it can be an appropriate and helpful step in processing.

However, it has been pointed out that bias introduced by GSR can cloud interpretation of
group differences in RSFC because the global signal is composed of an average of signals
throughout the brain. This argument has been made in 2 forms: first, that distortion occurs
within a subject or cohort simply by regressing the global signal (Murphy et al., 2009), and
second, that differential distortion occurs in different cohorts if the underlying networks are
differentially composed (Saad et al., 2012).

These arguments are mathematically sound, but the effect size depends on the
dimensionality of the data. That global signal regression ‘distorts’ relationships is very
evident in small systems with few independent signals (e.g., a 3 signal system such as that
used in (Saad et al., 2012)). However, distortion effects diminish rapidly in systems with
increasing numbers of independent signals. Additionally, as (shared) artifactual signal
increases relative to real signals, such distorting effects also diminish (Chen et al., 2012).

It is difficult know the number, relative strength, and spatial distribution of the signals
present in the brain tissues that comprise the global signal. Studies examining resting state
fMRI signal dimensionality suggest that at least a few dozen distinct signals may be present
(Cordes and Nandy, 2006), and several groups have reported that resting state signal can be
broken into 1–2 dozen major components or communities that correspond to task-associated
groups of brain regions (Power et al., 2011; Smith et al., 2009; Yeo et al., 2011). The size of
real signals in relation to artifactual signals is not easy to determine and will vary by dataset.
Our analyses indicate that artifactual signals can often be quite large relative to real signals
(Figures 3–6 and Supplemental Cohort Illustration). Simulations that capture the
dimensionality of actual data and the magnitude of artifactual signal in relation to real signal
will best inform the debate over the use of GSR.
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In our studies of motion effects in resting state data, two empirical observations are
noteworthy in relation to the concern raised by Saad and colleagues (that differential
composition of global signal may induce spurious group differences). The first is that this
concern can be addressed empirically: one can compare global signal composition (between
groups, subjects, scans, etc.) by examining the spatial beta maps arising from global signal
regression (Power et al., 2013) (or, similarly, maps of correlations of the global signal to
voxel timeseries, as in (Gotts et al., 2012)). When interpreting the results of this approach, it
is important to remember that the global signal is a combination of artifactual and neural
sources, and that the balance of these sources will impact observed differences in global
signal composition. For example, when the global signal composition in children and adults
are compared using t-tests of global signal regression beta maps without censoring,
prominent and significant group differences are found (Figure 1C of (Power et al., 2013)).
However, when even lenient censoring (FD > 0.5 mm) is used to remove motion-
contaminated data from global signal regression beta calculation, such group differences are
markedly reduced (Figure 1D of (Power et al., 2013)). These results indicate that pre-
censoring differences in global signal composition do not necessarily reflect differences in
the underlying distribution of neural signals, but instead may at least partially be due to
different amounts of motion artifact in the data contributing to the global signal.

The second empirical observation is that, on the argument that differential global signal
composition and regression induces spurious post-GSR group differences, one might expect
that adult group differences observed with GSR would exceed group differences observed
without GSR. Instead, the opposite effect is observed: with or without censoring, processing
with GSR reduces the number of observed group differences seen between adult cohorts by
almost 2 orders of magnitude compared to processing without GSR (Figures 9 and 13).
These results suggest that removal of spurious differences related to motion artifact far
outweighs spurious post-GSR distortions related to differential network composition. This
result is consistent with the recent report by Tyszka and colleagues, wherein control versus
autistic group differences were much smaller than motion-related effects within the same
subjects (Tyszka et al., 2013).

Investigators considering global signal regression therefore face a choice. This paper has
shown empirically that GSR is highly effective in removing artifactual variance in RSFC
data (Figure 7), that adequate subject-level motion artifact correction can be implemented
with GSR in combination with censoring (Figures 12), and that motion-related group
differences are 1–2 orders of magnitude less with GSR than without GSR (Figure 13).
Recently published evidence shows that GSR increases the resemblance of RSFC
correlations to electrophysiological measures (Keller et al., 2013). Balanced against these
benefits are the possible distortions within networks and across groups highlighted by
Murphy et al and Saad et al. Our discussion confirms these concerns but emphasizes that the
relevance of these concerns to actual data is incompletely established. On the whole, and
certainly until other adequate methods of artifact removal are developed, we find the
empirical benefits to outweigh the theoretical costs of GSR.

On detecting the influence of motion
This paper has used several approaches to quantify the influence of motion on BOLD signal
and RSFC correlations. We wish to outline conceptually what, in our opinion, does and does
not establish that a dataset is free of artifactual influences related to motion.

Scrubbing analyses are useful because they can be applied at the individual or the group
level, and because they effectively characterize motion-contaminated data. However, a
censoring analysis that finds no distance-dependent artifact does not necessarily establish an
absence of distance-dependent artifact. Suppose, for instance, that motion with FD > 0.2 mm
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corrupts data with a distance-dependent artifact. If data with FD > 0.5 mm are replaced (by
interpolation, by a mean value, etc.) and then a scrubbing analysis is performed with a
threshold of FD > 0.5 mm, no distance-dependence will be found. This result does not
actually demonstrate that the data are free of artifact. If the scrubbing threshold were
lowered to FD > 0.4 or FD > 0.2 mm, distance-dependent artifact would be found. If the
threshold were excessively lowered into the range of normal data (e.g., FD > 0.1 mm), data
without motion artifact would also be censored, diluting the characterization of the artifact-
laden data. The central point is that outlying data (to be censored) must be sensibly defined
for the scrubbing analyses to be useful.

Because censoring analyses are threshold-dependent and can be performed in ways that miss
motion artifact, examination of QC-RSFC correlations is an important part of evaluating a
dataset for influences of motion. These analyses can only be employed across multiple scans
or subjects, but their virtue is that no binarizing threshold is needed. For instance, in the
example above, the scrubbing analysis using a threshold of FD > 0.5 mm might show no
distance-dependence, but QC-RSFC correlations examined in the same dataset would reveal
a distance-dependent effect. Even if a scrubbing threshold were sensibly defined (e.g., FD >
0.2 mm in the present data), QC-RSFC correlations might reveal influences of smaller
movements that are not practically addressable or detectable by censoring analyses. It is for
this reason that we focus on both scrubbing and QC-RSFC correlation analyses in the
present manuscript.

One other important consideration relates to the selection of QC measures for defining
scrubbing or QC-RSFC correlation analyses. DV, since it is based on BOLD signal
intensity, will differ across datasets and processing strategies, and can be influenced by
blurring kernel size, frequency filter characteristics, sequence characteristics, etc. DV values
may therefore not be comparable across datasets. FD measures (and other measures of
absolute or relative displacement), on the face of it, seem like they should be comparable
across datasets. However, our experience with Human Connectome Project (HCP) data (see
(Smith et al., 2013) for a description of the data) has altered this assumption. In contrast to
the present data (acquired with TRs of 2.2–2.5 seconds), the HCP data are acquired with
TRs of a few hundred milliseconds. This shorter TR has the effect of dividing large
movements into several smaller movements, while simultaneously sampling effects like
head bobbing due to cardiac pulsations or respiration much more frequently. The net effect
is that, in the HCP data, DV traces exhibit signal-to-noise ratios that are useful for
identifying outlying datapoints, while FD traces are noisier and less useful in identifying
outlying timepoints (unpublished observations). We raise these points to emphasize that
choosing an appropriate QC measure and utilizing it effectively requires attention to an
individual dataset; simply taking a threshold or a QC measure from the literature without
assessing its characteristics in the data at hand may result in uninformative analyses.

Overall Summary
This paper aimed to expand knowledge about motion artifact in several ways. It illustrated
the diversity of signal changes that motion produces and pointed out some reasons why
current subject-level regressions inadequately capture motion-related variance. It placed
temporal limits on the ability of motion to impact RSFC correlations. It showed that data
improvements are partially cosmetic in terms of QC values and proposed methods to link
QC measures to significant changes in RSFC correlations. It proposed a within-subject
correction strategy that greatly reduces motion-related variance, and showed some
conditions under which group-level correction is or is not necessary, or effective. Our
current practices and recommendations are outlined in Table 2.
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Limitations and Future Directions
The options for processing resting state data are numerous. We have partially explored some
parameter spaces corresponding to a subset of possibilities for data processing. Other
possibilities remain to be explored. A further limitation of this work is that only data
acquired using a single sequence were examined. Other sequences may display different
characteristics with regard to the magnitude, variety, and duration of motion-related effects.
An additional limitation is that only a single set of criteria were examined for forming
temporal masks for reprocessing. It is possible that simple changes to our criteria might
yield easily obtainable improvements in control of motion artifact. Another limitation is that
only ‘functional connectivity processing’ was examined. It is possible that modifications
earlier in the processing stream would be more desirable, such as performing interpolation
procedures prior to slice-timing correction.

Post-hoc artifact reduction in resting state BOLD data is challenging. With advances such as
short-TE or multi-band sequences (Bright and Murphy, 2013; Feinberg et al., 2010), future
datasets will hopefully contain within themselves powerful means of artifact avoidance and
removal. Newer ICA-based techniques may prove successful in identifying and removing
artifactual influences. Novel treatments of realignment estimates may also prove more
useful than current realignment-based corrections. We believe, however, that effective
means for retrospective correction of motion-related artifact are already available.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Motion-related signal changes are varied and can persist >10 seconds after
motion ceases

- Such signal changes are often shared across almost all brain voxels

- Within-subject correction strategies can eliminate motion-related group
differences

- Examines the linearity of motion’s influence on resting state correlations
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Figure 1. Outline of data processing and scrubbing strategies
The column of boxes in the middle depict the general BOLD processing strategy. Part I of
the paper only uses the flow of the middle column (no scrubbing). The thick solid gray
arrows depict scrubbing as implemented in Part II, in which censoring is only performed
after the data are fully processed. The finer dotted gray arrows depict iterative processing as
implemented in Part III, in which censoring is incorporated into data processing steps.
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Figure 2. Quality control measures
At left and right are data from subjects in the low- and high-motion adult cohorts,
respectively. The BOLD data have been demeaned and detrended but have not otherwise
undergone functional connectivity processing. Vertical lines denote run borders. At top, the
6 rigid body realignment parameters are shown. Immediately below in red, the framewise
displacement (FD) trace is shown, indexing how much the head moves from volume to
volume. To give a sense of absolute rotational and translational head displacement, two
traces representing the summed absolute values of the translational and rotational
realignment parameters are shown. In the third panel the blue DV trace, calculated over a
whole brain mask (the mask used to define the global signal, hence the GS subscript) shows
the volumetric root mean squared value of the differentiated BOLD timeseries, indexing
how much timeseries across the brain change from volume to volume. At bottom, the
volumetric mean BOLD signal across the brain (the global signal) is shown with its
volumetric standard deviation (SD). FD, DV, and SD measures are elevated during periods
of motion. In addition to transient displacements, SD also tracks absolute head displacement
(black arrows). RMS movement denotes root mean square realignment estimates. The dotted
blue and green lines in the right panel are there simply to provide a reference from which to
see elevations in the traces.
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Figure 3. QC measures and timeseries in low-motion subjects
The upper traces in each plot are as in Figure 2. The timecourses of voxels in gray matter,
white matter, and CSF are shown as intensity plots (at left, the gray bar denotes gray matter,
the white bar denotes white matter, and the yellow bar denotes CSF). In the white matter
plot, the black bar indicates 10 TRs of data, and the white text indicates the Pearson
correlations between the mean gray matter (GM), mean white matter (WM), and mean
ventricular (CSF) signals. No motion-associated variance is evident, though there are
systematic fluctuations, of varying intensity in various subjects, that presumably reflect
neural activity and non-motion-related noise. These data are demeaned and detrended only,
as in Figure 2.
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Figure 4. QC measures and timeseries in subjects with intermittent movements
These subjects exhibit head movements in which the head departs from and returns to
positions near the origin (the dotted absolute displacement traces in the upper panels are not
elevated). Motion-related signal changes can be brief or long. They can be decreases,
increases, or complex waveforms. They are often but not always similar across voxels.
Motion-related variance is variably reflected in white matter or CSF voxels.
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Figure 5. QC measures and timeseries in subjects with shifted head position
These subjects exhibit movements that displace the head from the origin over prolonged
epochs (the dotted red traces in the top panels). SD traces reflect this absolute displacement.
Timeseries reflect this displacement and are often elevated or depressed for long periods by
shifted head position.
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Figure 6. Pre-regression relationships between mean compartment signals, the global signal, and
ROI timecourses
For all 160 subjects, the indicated correlations between the gray matter (GM), the white
matter (WM), the ventricular (CSF), and whole-brain (GS) signals were calculated.
Additionally, for 264 regions of interest, within-subject averages for the correlations of the
264 timeseries with the global signal were calculated, as well as the mean correlation over
all possible pairwise correlations between the 264 ROIs. All timeseries are from demeaned
and detrended data, as in Figures 3–5. The values in each subject are plotted as a function of
mean FD value and RMS motion. Linear fits including all subjects (gray) or excluding
outliers (black) are shown. Signal similarity, generally, is higher in subjects with more
movement. Mean FD, generally, is a better predictor of signal similarity than RMS motion.
Gray matter signal is highly correlated with the global signal.
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Figure 7. Common regressions only partially remove motion-related variance
At top, the data from 3 subjects of Figures 3–5 are re-presented, now with traces (DV, SD,
mean signal) representing values derived from gray matter voxels only (instead of whole-
brain values). Below the horizontal line, the data after 4 different regression strategies are
shown. The top panels represent the 18-parameter regression historically used in the
Petersen/Schlaggar lab (12 motion-related, 6 signal-related). The next panels are the same
regressors without the global signal and its derivative. The next rows replace the 12 motion-
related parameters with 24- and 36-parameter Volterra expansions of realignment estimates.
Regardless of the regression strategy, the signal-derived QC measures (DV and SD) indicate
artifacts in the post-regression data at periods of motion. Global signal regression visibly
removes much of the motion-related signal in addition to non-motion-related signal shared
across voxels. Larger numbers of motion-related regressors capture more, but not all,
motion-related variance. All scales are identical to those of Figures 3–5. Similar results are
seen in Figure S3, where the same analyses are repeated with no tissue-based signals (no
GS, WM, or CSF signals).
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Figure 8. The temporal limits of motion’s influence on RSFC correlations
This analysis reveals the impact on RSFC correlations of volumes acquired before, during,
and after head motion. (A) Illustrations of temporal masks in two subjects. (B) For
completely processed data prepared without GSR (top) and with GSR (bottom), the effects
of each mask in (A) are shown. Δr is calculated across all subject impacted by a particular
mask. The number of subjects impacted by a mask and the mean and standard deviation of
remaining data are shown for each analysis (e.g., the N=150 for the 3rd mask means that
150/160 subjects had some volumes with FD > 0.2 mm, and the 10/160 who did not were
not included in Δr calculations). TRs prior to motion were examined because frequency
filtering can spread artifact backward and forward in time, and TRs subsequent to motion
were examined especially due to the prolonged signal changes seen in Figure 4.
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Figure 9. Motion scrubbing selectively decreases group differences
These plots show, for analyses with GSR (left) and without GSR (right), the distance-
dependent changes in correlation produced by FD-targeted scrubbing in various cohorts at
various thresholds (a lenient threshold of FD > 0.5 mm and a strict threshold of FD > 0.2
mm). N indicates the number of subjects in the analysis, and the numbers below indicate the
mean and standard deviation of the percentage of data remaining after scrubbing. At bottom,
the number of significant differences between low-motion and high-motion adult cohorts are
shown, out of ~35,000 pairwise correlations, as determined by a two-sample t-test. The error
bars on the random bars are the standard deviations across 30 repetitions of random
censoring. Comparisons of all adult cohorts at other statistical thresholds yield similar
patterns and are shown in Figure S5. In these analyses, unlike other Figures, mean Δr is
calculated across all subjects in a cohort, regardless of whether any volumes were censored,
to illustrate the types of ‘bottom line’ changes in RSFC that would actually be seen in
cohorts upon scrubbing and entire dataset.
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Figure 10. An illustration of the evolution of signal-based QC measures through functional
connectivity processing
At left, for a single subject, FD traces are shown at top, and DV and SD traces are shown at
different steps of functional connectivity processing. DV and SD traces evolve throughout
processing. For DV and SD, the horizontal lines represent, across all subjects, a threshold 2
standard deviations above the median value (the number beside the plot). At right, in Cohort
1, the across-subject Δr (N=40) produced by censoring volumes above the thresholds
displayed at left. QC values from any stage of processing produce temporal masks with
similar effects. These results are obtained by censoring fully processed timeseries; similar
effects are seen when timeseries from any stage of processing are censored (data not shown).
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Figure 11.
A) Scrubbing of volumes that begin with high outlying DV values before functional
connectivity processing but which then exhibit DV values within 1 s.d. of the median DV
value following nuisance regression. The timeseries are post-regression, pre-frequency-
filtering (other stages showing similar effects are shown in Figure S9). B) Top, for a single
subject, the within-subject changes in mean short-distance correlation seen in a 50-volume
sliding window are shown as a function of the highest FD value found within each window.
The black points establish random expectations, and are produced by random orderings of
the data. Bottom, a heat map showing the across-subject distribution of empirical ranks
within binned QC ranges. Rank bins are 0–100% in 5% bins. With 20 rank bins, 5% of the
data should fall in each rank bin by chance. The black sigmoidal trace is the cumulative
distribution of datapoints across subjects.
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Figure 12. Scrubbing and reprocessing reduce QC-RSFC correlations
For all 120 adults, mean FD was correlated across subjects with each pairwise correlation
under several processing regimes. The histograms plot the observed and random QC-RSFC
relationships observed under each processing stream.
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Figure 13. Adult group differences under different processing strategies
This figure shows the number of group differences expected by chance (black) and the
number of observed differences seen between the adult cohorts under different processing
strategies. The number of significant differences is defined by p > 0.00005 in 2-sample t-
test, as in Figure 9. Identical analyses with stricter and more lenient statistical thresholds
(those of Figure S5) yield similar results and are shown in Figure S10. Permutation tests
(10,000 fold) among the 120 adults established null expectations and the significance level
of the observed group differences. The numbers above the red bars are the number of
differences, which were much greater than the other group differences.
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Figure 14. Some limitations of group-level regression
A) A diagram of how across-group and within-group regression may and may not correct
artifactual increases in correlations. In these simulations, a ‘true’ value is specified for each
cohort, as is an FD distribution (low-motion and high-motion). ‘Observed values‘ are
computed by adding a constant beta multiplied by the subject’s FD value to the ‘true’ value.
‘Across-group corrected‘ values reflect residuals after a linear fit is made across both
cohorts, and ‘within-group corrected‘ values reflect residuals (intercepts retained) after a
linear fit is made within each cohort. The ‘within-group’ correction works because the rise
in r per unit FD is linear and identical in both groups. B) For 3 randomly selected pairwise
relationships, the RSFC correlations (without GSR) of 120 adult subjects are plotted as a
function of each subject’s mean FD. Lines show linear QC-RSFC fits on different subsets of
the data, including all subjects (black), the actual FD-binned cohorts of the paper (red), and
randomly-formed 40-subject cohorts that have indistinguishable mean FD distributions. C)
The beta values at 100 randomly selected pairwise correlations are shown below. D) Across
all pairwise correlations, the distribution of beta values in the different cohorts of (B, C).
The betas in the low-motion cohort are higher and span a broader range of values than the
betas found in the other cohorts. These data were prepared using regressors [WM WM′ CSF
CSF′ R R2 Rt-1 Rt-1

2].
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Figure 15. Discussion points
A) The 264–264 average correlation matrix in the adult cohorts under different processing
streams. B) Histograms of the correlation values found without GSR in the adult cohorts. C)
Red vectors show where negative correlations are located in (B). D) Plots of RSFC
correlation values under different processing strategies. Points under the line have higher
values under the processing indicated on the X axis. E) Comparison of optimal within-
subject processing vs. optimal processing without GSR in high-motion adults. F)
Comparison of processing with and without GSR in low-motion adults.
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Table 1

Section Objective and Figure Finding

I. Understand
motion’s
effects on
BOLD signal

• See timeseries from major brain
compartments (gray matter (GM), white
matter (WM), and ventricles (CSF)) in
still subjects (Fig. 3)

• Motion-unrelated signals changes are shared across gray
matter voxels and in white matter and ventricles

• See timeseries during movement (Fig. 4) • Motion-induced signal changes:

variable waveforms

often similar across voxels

present in white matter and ventricles

can persist >10 seconds after motion ends

• See timeseries during head displacement
(Fig. 5)

• Displacement causes prolonged shifts in signal intensity

• Quantify timeseries similarity in GM,
WM, and CSF

• Quantify how subject motion impacts
similarity (Fig. 6)

• Compartment signals correlate positively

• Compartment correlations increase with subject motion

• Visualize the efficacy of nuisance
regressors, focusing on the global signal,
WM and CSF signals, and several
versions of motion-related regressors
(Fig. 7)

• Global signal markedly reduces motion-related variance

• WM and CSF signals modestly remove such variance

• Motion-related regressors alone are modestly effective

Diminishing returns are seen with more regressors

II.
Understand
motion’s
effects on
correlations

• Evaluate distance-dependent artifact
found in volumes before, during, and
after motion (Fig. 8)

• Distance-dependent artifact found with and without
GSR

• Post-motion artifact found only without GSR

• Examine lenient and strict censoring
criteria

• Determine whether motion censoring
selectively removes motion-related
group differences (Fig. 9)

• As censoring becomes stricter, more artifact is removed.

• Motion-related group differences are selectively reduced
by censoring motion-contaminated data.

• Show QC traces over stages of
processing (Fig. 10)

• QC traces evolve to possibly reflect data improvement

• “Bad” QC values denote motion artifact at all stages

• Determine whether data with initially
“bad” QC values that then become
“good” still harbor artifact (Fig. 11)

• “Improvement” in QC values at later stages of
processing is partially cosmetic; the data still harbor
motion artifact.

• Determine QC thresholds below which
data are “good” and above which data
are “bad” (Fig. 11)

• FD > 0.5 mm: marked correlation changes observed

• FD = 0.15–0.2 mm: significant changes begin to be seen

III. Methods
to suppress
motion
artifact

• Quantify cross-subject correlation
between summary QC measures and
RSFC correlations (a la Satterthwaite et
al.) under different processing streams
(Fig. 12)

• Without GSR, QC-RSFC correlations are positive

• With GSR, QC-RSFC correlations are zerocentered and
overlap random expectations except at short distances

• Censoring reduces QC-RSFC correlations

• Interpolation further reduces QC-RSFC correlations
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Section Objective and Figure Finding

• With censoring and interpolation

Without GSR: QC-RSFC correlations remain
positive

With GSR: QC-RSFC correlations are virtually
eliminated

• Quantify the number of motion-
attributable group-level differences
under different processing streams (Fig.
13)

• GSR, in combination with censoring and interpolation,
reduces motion-related group differences to chance
levels

• Without GSR, motion-related group differences remain

• Outline theoretical issues with group-
level correction

• Assess the issues empirically (Fig. 14)

• All group-level corrections

May miss true group differences obscured by
motion

May remove true differences that covary with
regressors

• QC-RSFC correlations are often non-linear
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Table 2

Why we do it Possible drawbacks

Censoring • Eliminates the influence of corrupted data

• Conceptually and empirically most
effective when implemented throughout a
processing stream

• Reduces dependence of correlations on
motion

• Loss of data and possibly subjects

• Unequal degrees of freedom across
subjects

But can trim to equal size

Interpolation • Reduces amplitude of artifactual signal
spread into adjacent TRs during frequency
filtering

• Replacement data has synthetic
characteristics

Better than original
characteristics

But should probably not be
treated as if it were original
data (which is why we re-
censor it)

Regression: Global signal • Strongly reduces dependence of
correlations on motion

Most effective at medium to long
distances

Positive relationships remain at short
distances, which can be suppressed
by censoring and interpolation

• Eliminates post-motion influences on
correlations

Otherwise ~ 10 sec post-motion
influences

• Reduces shared non-motion artifact

Otherwise need some other type of
artifact removal

• Increases RSFC correspondence to ECoG

• Removal of shared neural signal

• If composed of few signals

Distorted correlation structure

Possible misattributed group
differences

Regression: white matter,
CSF

• Modestly helpful at reducing artifact

Regression: motion estimates • Modestly helpful at reducint artifact

• 24-parameter Volterra expansion
increasingly used

Superior to our old 12-parameter
regression

• Even large expansions (36
parameters) are insufficient to
remove motion artifact

• 12 degrees of freedom lost per order
of expansion
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