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Abstract
Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally
correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization.
However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow
fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag
structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to
overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize
lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies
in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are
preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to
diverse behavioral tasks—altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our
findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of
resting-state infra-slow activity.
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Introduction
Resting-state functional magnetic resonance imaging (rsfMRI)
provides a means of studying intrinsic, ongoing activity in the
brain. Spontaneous fluctuations in the blood oxygenation level-
dependent (BOLD) signal occur throughout the brain and are
highly coherent among functionally related regions (“functional

connectivity”, or FC) (Biswal et al. 1995; Fox and Raichle 2007).
Accordingly, rsfMRI correlation structure captures the large-
scale spatial organization of brain function, comprising several
“resting-state networks” (RSNs) whose topographies correspond
to responses evoked by behavioral tasks (Smith et al. 2009; Power
et al. 2011; Yeo et al. 2011).
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BOLD fMRI is effectively restricted to infra-slow frequencies
(<0.1 Hz) (Hathout et al. 1999; Anderson 2008). A widely held
view is that BOLD FC reflects low-pass filtered correlated neural
activity at faster (e.g., > 1 Hz) timescales (Cabral et al. 2017).
However, recent human and mouse evidence supports an alter-
native view, specifically, that BOLD fluctuations reflect bona fide
infra-slow electrophysiological activity (ISA) (He et al. 2008; Pan
et al. 2013; Hiltunen et al. 2014), whose dynamic propagation
through the brain gives rise to RSNs (Mitra et al. 2015a; Matsui
et al. 2016; Mitra et al. 2018). As a result, spontaneous ISA
also exhibits brain-wide spatio-temporal organization compris-
ing multiple reproducible propagation sequences (Majeed et al.
2009; Majeed et al. 2011; Mitra et al. 2014; Mitra et al. 2015a;
Amemiya et al. 2016; Matsui et al. 2016). The resulting temporal
latency structure of ISA reorganizes across arousal states (Mitra
et al. 2015b; Mitra et al. 2016; Mitra et al. 2018) and is sensitive
to behavioral state (Mitra et al. 2014) and pathology (Mitra et al.
2017), even in the absence of significant changes in correlation
structure.

These observations, along with the intimate relation between
ISA and higher-frequency activity (Buzsáki and Draguhn 2004;
Vanhatalo et al. 2004; Monto et al. 2008; Palva and Palva
2012; Mitra et al. 2018), suggest that ISA latency structure
may relate to systems-level neural communication. However,
the measurement of temporal delays in infra-slow signals
is particularly subject to sampling variability (Smith et al.
2011; Raut et al. 2019), motivating the use of large group
averages in previous fMRI investigations of latency structure.
Thus, it has not been feasible to determine the extent to
which BOLD latency structure is prominent in, or varies
among, individual humans. As a result, these questions remain
unanswered.

Recent rsfMRI datasets of highly-sampled individuals offer
the advantages of extensive image averaging while retaining
individual-specific information (Choe et al. 2015; Laumann
et al. 2015; Braga and Buckner 2017; Gordon et al. 2017c).
These datasets support a growing appreciation of individual
variability in the large-scale functional organization of the
human brain, as defined by the correlation structure of BOLD
signals (Mueller et al. 2013; Wang et al. 2015; Xu et al. 2016;
Gordon et al. 2017a; Gordon et al. 2017b; Gratton et al. 2018;
Marek et al. 2018). Yet in addition to individual variability that
is most prominent at fine spatial scales (Braga and Buckner
2017; Gordon et al. 2017a; Feilong et al. 2018), at broader
spatial scales the topography of RSNs is remarkably consistent
across individuals (Damoiseaux et al. 2006; Yeo et al. 2011)
(see Gratton et al. 2018 for disambiguation of individual-
specific and group factors). Importantly, neither the presence
of individual-specific features nor general correspondence with
large group averages have been investigated with attention to lag
structure.

Here, we use rsfMRI data from 11 highly-sampled individuals
to characterize BOLD temporal lag structure at the individual
level. We demonstrate broadly similar lag structure across
individuals in addition to reliable individual differences.
We additionally investigate the quantity of data needed
to stabilize measures of ISA spatiotemporal structure in
a single individual. Finally, we build upon the previously
mapped functional network organization of these individuals
(Laumann et al. 2015; Gordon et al. 2017b) in order to identify,
at an individual level, consistent associations between the
spatial and temporal latency organization of intrinsic brain
activity.

Materials and Methods
MyConnectome Dataset

The MyConnectome dataset was collected from a single subject
(RP) over the course of 532 days. Details regarding RP and the
MyConnectome dataset are published in detail elsewhere (Lau-
mann et al. 2015; Poldrack et al. 2015) and are summarized here.
RP is a right-handed, healthy male aged 45 years old at study
onset. Scans were performed at 5 p.m. on Mondays (N = 13) and
at 7:30 a.m. on Tuesdays (N = 43) and Thursdays (N = 32). Imaging
was performed with a Siemens Skyra 3 T MRI scanner using a 32-
channel coil and a multi-band EPI sequence (TR = 1.16 s; 2.4 mm
isotropic voxels). The present analyses are based on 88 10-min
(∼15 h in total) eyes-closed rsfMRI scans from this dataset.

Midnight Scan Club Dataset

The Midnight Scan Club (MSC) dataset comprises 10 healthy,
right-handed individuals aged 24–34 years old (5 females). One of
these subjects is a co-author (N.U.F.D.). Details regarding the MSC
dataset are published elsewhere (Gordon et al. 2017c). Briefly,
subjects each underwent 10 scanning sessions performed at
midnight. Images were collected on a Siemens TRIO 3 T MRI
scanner and included 30 contiguous minutes of eyes-open
rsfMRI per session (TR = 2.2 s; 4.0 mm isotropic voxels), totaling
300 min per subject. During rsfMRI acquisition, subjects fixated
a white crosshair against a black background.

Distortion Correction

For each subject a mean of field maps collected over multiple
sessions was applied to images from all sessions for distortion
correction, as described in detail elsewhere (Laumann et al.
2015).

fMRI Processing

Functional data were preprocessed to reduce artifact, maximize
cross-session registration, and resampled in atlas space. All
sessions underwent correction for odd-even slice intensity dif-
ferences stemming from interleaved acquisition of slices within
a volume, correction for within-volume slice-dependent time
shifts, intensity normalization to a whole brain mode value
of 1000, and within- and between-run rigid body correction
for head movement. Transformation to Talairach atlas space
(Talairach and Tournoux 1988) was computed by registering
the mean intensity image from a single BOLD session via the
average T1-weighted image and average T2-weighted image, and
subsequent BOLD sessions were linearly aligned to this first
session. This atlas transformation was combined with mean
field distortion correction and resampling to 3 mm isotropic
atlas space in a single step.

Atlas-transformed, volumetric time series were further pro-
cessed to reduce artifact. First, temporal masks were created to
flag motion-contaminated frames. Such frames were identified
by outlying values of framewise displacement (FD), a scalar
index of instantaneous head motion, computed as the sum of
the magnitudes of the differentiated translational (three) and
rotational (three) motion parameters (Power et al. 2012). Several
MSC subjects exhibited power spectral peaks at the respira-
tory frequency especially in the phase-encoding direction (y;
anterior-to-posterior) (Gordon et al. 2017c). Because this oscil-
latory artifact did not obviously corrupt the data and occurred
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above frequencies of interest (>0.1 Hz), we low-pass filtered
the y-motion time course at 0.1 Hz in all MSC subjects prior to
computing FD to prevent inflation of FD values and superfluous
data loss (Siegel et al. 2017). In RP, this artifact appeared in
all six head motion time series and was removed accordingly.
Frames with FD exceeding 0.5 mm in MSC or 0.2 mm in RP
were replaced by linear interpolation to yield continuous time
series filtered identically to the fMRI data (Carp 2013). The fMRI
data were passed through a second-order Butterworth band-
pass filter (0.005 Hz < f < 0.1 Hz) to mitigate scanner drift and
high-frequency artifact.

Next, the filtered BOLD time series underwent nuisance
regression. Briefly, masks of white matter and ventricles were
segmented using FreeSurfer (Dale et al. 1999; Fischl 2012). A
third nuisance mask was created for extra-axial voxels by
thresholding a temporal standard deviation image (tSD > 2.5%)
that excluded the eyes and a dilated whole brain mask.
The mean and first derivative of signals from each of these
compartments and from the whole brain (global signal), as
well as the six realignment estimates were regressed from the
filtered, interpolated BOLD time series. Finally, the interpolated
time points were re-censored using a temporal mask.

Generation of Individual Cortical Surfaces

As described previously for RP (Laumann et al. 2015) and MSC
(Gordon et al. 2017c), each subject’s anatomical surface was
generated from their average T1-weighted image in native volu-
metric space using FreeSurfer’s “recon-all” processing pipeline.
The pipeline entailed brain extraction and segmentation (hand-
edited for accuracy), generation of white matter and pial sur-
faces, inflation of surfaces to a sphere, and spherical registration
of the original surface to the fsaverage (Dale and Sereno 1993;
Dale et al. 1999; Fischl et al. 1999; Fischl et al. 2001; Ségonne
et al. 2004; Ségonne et al. 2005). The fsaverage-registered left
and right hemispheres were placed in correspondence with one
another by applying deformation maps from a landmark-based
registration of left and right fsaverage surfaces to a hybrid left-
right fsaverage surface (‘fs_LR’) (Van Essen et al. 2012). These
deformation maps were combined with those for resampling to
a resolution of 164 000 vertices per hemisphere (164 k fs_LR) and
downsampling to a resolution of ∼4000 vertices per hemisphere
(‘4 k fs_LR’). These various surfaces in native volumetric space
were then transformed into atlas volumetric space by applying
the previously computed T1-to-atlas transformation.

Surface Processing and CIFTI Creation

Following nuisance regression, BOLD time series were converted
to CIFTI format, which projects data from cortical voxels to a sur-
face while retaining volumetric time series from the subcortex
and cerebellum (Marcus et al. 2011). CIFTI creation proceeded
as follows: BOLD time series from each subject were sampled
to their native mid-thickness surfaces (created by averaging the
white and pial surfaces) using the “ribbon-constrained” sam-
pling procedure (Glasser and Van Essen 2011) from Connectome
Workbench. Once sampled to the native surface, time courses
were deformed and resampled from the individual’s original
surface to a ∼4000 vertex (per hemisphere) fs_LR surface in a sin-
gle step using the deformation map generated above. Relatively
low-resolution surfaces (∼6 mm spacing) compared to previous
RP and MSC analyses (∼32 k vertices per hemisphere, ∼2 mm
spacing (Laumann et al. 2015; Gordon et al. 2017c)) are used here

in order to improve signal-to-noise ratio and reduce compu-
tational demand associated with constructing pairwise vertex
level cross-covariance functions (CCFs). Surface time series were
subsequently geodesically smoothed along the respective sub-
ject’s cortical surface, as described in Glasser et al. (2013), with
a 2D Gaussian kernel (σ = 5.10). For display purposes, for com-
puting spatial overlap (Fig. 6), and for comparison with FC graph
metrics (Fig. 7), lag maps were up-sampled to the ∼32 k, ∼2 mm
resolution surfaces and geodesically smoothed (σ = 1.70). All
other computations were performed at 6 mm resolution.

Lag Analysis

The Pearson correlation coefficient, r, for zero-lag correlation
between continuous signals, x1(t) and x2(t), is given by:

rx1x2 = 1
σx1 σx2

1
T

∫
x1(t)•x2(t)dt, (1)

where σx1 and σx2 are the temporal standard deviations of the
zero-mean signals x1 and x2 and T is the interval of integration.
By generalizing this equation to accommodate temporal delays,
τ , between the signals, correlation (or covariance, for simplicity)
can be computed as a function of delay in seconds. Thus,

cx1x2 (τ ) = 1
T

∫
x1 (t + τ) •x2(t)dt (2)

defines the CCF. The lag between x1 and x2, τ1,2, is then

determined to be the value of τ at which cx1x2

(
τ
)

exhibits an

extremum. Thus,

τ1,2 = arg max
τ

(∣∣cx1x2 (τ )
∣∣) . (3)

While the CCF of periodic time series is likely to feature mul-
tiple extrema, BOLD signals are aperiodic (He et al. 2010) and
almost always produce a single, well-defined cross-covariance
extremum for a given pair of time series, typically in the range
of ±1 s.

In practice, we first construct the CCF in the time domain
at discrete multiples of the TR (i.e., at the sampling interval)
(see Raut et al. 2019 for a more detailed explanation). A single
CCF for each session is obtained by summing unnormalized
cross-covariance over blocks (b) of contiguous frames, and
subsequently normalizing based on the total number of
time points in a session contributing to a given CCF lag.
Thus,

cx1b
x2b

(�) =
Nb−�∑

t=1

x1b (t + �) •x2b
(t), (4)

cx1x2 (�) = 1
N�

B∑
b=1

cx1b
x2b

, (5)

where � is the temporal shift in units of TRs, t indexes frames
within the block, Nb is the total number of frames within the
block, N� is the total number of frames contributing to the CCF
estimate at a particular temporal shift, and B is the total number
of blocks. Time series are set to zero-mean prior to Equation (4)
by subtracting the mean computed over the maximum num-
ber of realizations (i.e., all non-censored frames from the time
series).
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We used three-point parabolic interpolation centered on the
empirical peak of cx1x2 (and the immediately preceding and
succeeding samples) to approximate the extremum and its asso-
ciated abscissa, τ̂1,2, at a temporal resolution finer than the
sampling rate. Time delays longer than 4 s (τ̂max = 4 s) were
discounted as, in our experience, such results appear to reflect

sampling error or artifact. cx1x2

(
�

)
was computed over � ∈ [−4, 4]

and [−3, 3] for RP (TR = 1.16 s) and MSC (TR = 2.2 s), respectively.
Performing minimal time shifts reduces the minimum duration
required for a block of contiguous frames to contribute to each
point of the CCF, which maximizes data usage (Raut et al. 2019).

The above approach can be generalized to a set of n time

series
[
x1(t), x2(t), . . . , xn(t)

]
. Thus, Cxixj

(
�

)
will be an n × n × �

cross-covariance matrix from which τ̂xixj can be obtained for

every pair of time series, xixj

(
i, j ∈ 1, 2, . . . , n

)
, yielding an n × n

time delay matrix:

TD =

⎡
⎢⎢⎣

τ̂1,1 · · · τ̂1,n

...
. . .

...
− τ̂n,1 · · · τ̂n,n

⎤
⎥⎥⎦ . (6)

The diagonal entries of TD are 0 by definition, because any
time series is perfectly correlated with itself at zero-lag. More-
over, TD is anti-symmetric (τ̂i,j = −τ̂j,i): if the time series xi

is determined to precede xj by a certain magnitude, then xj

can equivalently be said to succeed xi by the same magnitude,
yielding the opposite sign.

Here we compute τ̂i,j as the temporal delay of xj relative to
xi, such that a negative value implies that xj precedes xi. Thus,
following Nikolic et al. (Schneider et al. 2006; Nikolić 2007), a
column-wise mean yields a one-dimensional projection of TD,
which we refer to as a “lag projection” (TDP), which reflects the
mean latency of each vertex with respect to all other vertices.
Thus,

TDP = 1
n

⎡
⎣ n∑

j=1

τ̂1,j . . .

n∑
j=1

τ̂n,j

⎤
⎦ . (7)

Further, for a given “seed” region comprising one or mul-
tiple vertices, the entire rows of TD corresponding to these
vertices can be averaged to give a seed-based lag map—a one-
dimensional map of each vertex’s temporal delay with respect
to the seed.

Pairwise TD root mean square error is inversely related to
zero-lag correlation magnitude, | r |. We have previously mod-
eled this relationship as follows:

f(r) = β tan
(

π
2 (1 − |r|)) , (8)

where β is fit by conventional regression (Raut et al. 2019). This
relation can be used to reduce lag projection sampling error
by down-weighting high-variance lag estimates. Thus, we addi-
tionally computed weighted lag projections (wTDP) by inversely
weighting TD pairs in proportion to modeled squared error.
Thus,

wTDP =
[

1∑
wj

]
•

⎡
⎣ n∑

j=1

w1,j•τ̂1,j . . .

n∑
j=1

wn,j•τ̂n,j

⎤
⎦, where wi,j = 1

f2
(
r̂i,j

) .

(9)

Importantly, values in weighted lag projections—as in unweighted
lag projections—retain the dimension of time and are therefore
expressed in seconds.

MATLAB code for computing lag analyses as described in this
paper is publicly available at https://github.com/RaichleLab/lag-
code .

Similarity Analysis

Similarity of surface maps (Figs. 3 and 4) was computed as
the Pearson spatial correlation over vertices. For TD and FC
matrices, this measure was computed over the vectorized upper
triangular of the full 7320 × 7320 matrix. Statistical significance
of differences in similarity (Fig. 3) was assessed with Student’s
paired t-tests performed on the Fisher-z transformed r values.
For comparisons involving the MSC average, the MSC average
was computed using all 100 sessions.

Community Detection and Graph Analyses

Individual-specific RSN parcellations were computed by subject-
ing weighted graphs, constructed from thresholded vertex-wise
correlation matrices (suprathreshold values retained), to the
InfoMap community detection algorithm (Rosvall and Bergstrom
2008), as in prior descriptions of RSN organization in the present
individuals (Laumann et al. 2015; Gordon et al. 2017c). Com-
munity density maps were computed following Power et al.
(Power et al. 2013). Specifically, for each cortical vertex (at ∼2 mm
resolution, ∼32 k vertices per hemisphere) and each correlation
threshold (i.e., thresholds retaining the top 0.5–2.5% of correla-
tions, in 0.5% steps) we computed the number of unique com-
munities present within a given radius of the vertex center. Radii
of 5–10 mm in 1 mm steps were analyzed, and community den-
sity maps were averaged across the five correlation thresholds.
Hence, 30 total analyses (five thresholds x six radii) contributed
to the mean community density map of each individual.

Participation coefficient, PCi, was computed for each node, i,
following Guimerà & Nunes Amaral (Guimerà and Nunes Amaral
2005); thus,

PCi = 1 −
NM∑
s=1

(
κis

ki

)2

, (10)

where κis is the sum of supra-threshold correlations (i.e., sum
of “weighted edges”) of node i to nodes in module s, and ki is
the sum of all supra-threshold correlations of i. Greater values
of PC therefore indicate increasingly uniform distribution of
strong correlations among all modules. To reduce computational
demand, participation coefficient was computed using the same
6 mm resolution vertices that formed the ROIs for lag analy-
ses. Participation coefficient was analyzed across 10 correlation
thresholds that achieved a similar range of graph sparsity to
those used for community density analyses; these were the top
10–2% (in 0.5% steps) of correlations (Power et al. 2013). Partic-
ipation coefficient values were subsequently summed across
thresholds and normalized relative to the maximum possible
value (i.e., 10), and up-sampled to 2 mm resolution to match
community density.

For inter-subject comparison, graph metrics were first
standardized (zero-meaned and given unit standard deviation)
within each individual. Standardized community density
values were subsequently averaged into 5% bins spanning
the range of lag projection values, ordered from early-to-
late. Mean correlation magnitude (“node strength” in graph
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terms) was computed as a row-wise sum of the absolute value
correlation matrix and similarly standardized within-individual
and analyzed across different percentile bins of the up-sampled
lag projection.

Statistical significance of community detection, participation
coefficient and node strength values for each lag percentile bin
was determined by one-sample t-tests against the null hypoth-
esis of Z-score = 0 (Bonferroni correction for 20 bins).

Results
Individual-specific Patterns in Brain-wide Latency
Structure

We examined individual-level BOLD lag structure in the recently
published “MyConnectome” (Laumann et al. 2015; Poldrack et al.
2015) and “Midnight Scan Club (MSC)” (Gordon et al. 2017c)
datasets. These datasets comprise, respectively, 88 ten-min
scans in one individual (initials R.P.) and 10 thirty-min scans
in each of 10 individuals (100 scans in total).

Temporal sequences of ISA can be studied by computing
interregional time delays in the BOLD signal. Here, we determine
lag as the time shift that optimizes the covariance between a
given pair of time series; we use parabolic interpolation of the
cross-covariance curve to resolve time delays finer than the
sampling rate (see Methods). All pairwise delays are assem-
bled into an anti-symmetric time delay (TD) matrix. Despite
high-dimensionality (Mitra et al. 2015a), BOLD TD matrices are
significantly transitive (Mitra et al. 2014). Thus, there exists
a dominant propagation pattern that can be represented as
a one-dimensional brain map, computed as the column-wise
mean of the TD matrix (Schneider et al. 2006). The resultant
“lag projection” reflects each region’s mean temporal lead or
lag relative to all other regions. Computing the projection as
a weighted column-wise mean, where weight is inverse to TD
variance (see Methods), improves the reliability of the estimate
(Raut et al. 2019).

Figure 1A illustrates weighted lag projections averaged across
all MSC subjects (henceforth referred to as the group average)
and the individual, RP. Bilaterally symmetric, distributed “early”
and “late” regions are immediately apparent in both the group
and individual. Figure 1B extends this result to each of the
MSC individuals. Importantly, the topography of early and late
regions varies from subject to subject yet is generally similar
across individuals. Thus, BOLD temporal lag structure is robust
at the individual level, although some features of this structure
exhibit individual variations, which we discuss further below.

Spatiotemporal Structure within Conventional
Functional Networks

Prior findings have demonstrated that lag structure is largely
orthogonal to conventional RSN boundaries (Mitra et al. 2014).
Thus, rather than functionally-related regions being iso-latent,
temporal delays on the order of 1 s are apparent within each
major large-scale network. In other words, no network is wholly
either early or late, provided the analysis is conducted in awake
subjects (Mitra et al. 2015b). To explore this property in the
individual, we computed seed-based lag maps in two large,
distributed networks. Seeds were placed in the dorsolateral
prefrontal cortex (Fig. 2A), which largely corresponds to the fron-
toparietal control network (FPC) (Dosenbach et al. 2007; Vincent
et al. 2008), and the precuneus (Fig. 2B), a hub of the default

mode network (DMN) (Greicius et al. 2003). These maps reflect
latency of each region with respect to the seed. As is evident in
Figure 2, these networks exhibit a range of delays on the order
of 1 s in both the MSC average and individual. Moreover, several
spatiotemporal features within these networks are common to
the group. For instance, in the FPC, a lateral prefrontal early-
to-late gradient in the posterior-to-anterior direction is promi-
nent in both the group and each individual, in addition to an
early region in the dorsomedial prefrontal cortex. In the DMN,
early-to-late gradients are present in the precuneus, the earliest
region being the retrosplenial cortex. On the other hand, the
medial prefrontal cortex, while late in the group average, is not
appreciably later than the rest of the DMN in one individual,
RP. In sum, even at the individual level, BOLD fluctuations are
not temporally synchronous within RSNs. Moreover, individual
variability in latency structure can exist even where RSN spatial
topography, defined by zero-lag FC, is largely conserved.

Specificity and Reliability of Latency Structure
in Individuals

Given the presence of such individual differences, the question
arises as to whether these differences stem primarily from
sampling variability or true individual-specific spatiotemporal
patterns in spontaneous activity (or other potential sources
unrelated to sampling variability, such as registration errors). We
addressed this question by dividing the total number of sessions
available for each subject into random split halves and com-
puting spatial correlations between measures obtained from
each of these halves (within and between subjects). Thus, we
defined similarity (or, in the case of intra-individual comparison,
“reliability”) as the Pearson correlation coefficient between two
halves. Each half comprises 150 min of data for MSC subjects
and 440 min of data in RP.

Figure 3 displays the resulting split-half similarity matrices
for several measures of spatiotemporal structure, where diag-
onal two-by-two blocks correspond to intra-individual corre-
lation, off-diagonal blocks reflect inter-individual correlations,
and the final row and column reflect correspondence with the
MSC average. Figure 3A reflects the subject-specificity and relia-
bility of TD matrices. For MSC subjects, intra-individual reliabil-
ity of the full TD matrix is notably weak and is generally lower
than correlation with the group, which comprises 3000 min of
data (Fig. 3A, left). This result is expected given the sensitivity of
BOLD TD estimation to sampling variability, particularly among
pairs of weakly correlated time series, which constitute the
majority of time series pairs in global signal regressed-data (Raut
et al. 2019).

If sampling variability is the primary explanation for low
intra-individual reliability, focusing on more strongly correlated
time series should improve reliability. Indeed, by excluding time
series pairs with correlation magnitude below 0.2 or 0.4 (Fig. 3A
middle and right, respectively), as determined by the group aver-
age FC matrix, intra- and inter-individual similarity of time delay
relationships are markedly improved for all subjects. Impor-
tantly, intra-individual similarity (near-diagonal blocks) exceeds
similarity to the group average (last row/column) when exclud-
ing weakly correlated region pairs. Thus, sampling variability
obscures true individual differences in latency structure. This
inference is further supported by the fact that RP exhibits mod-
erate reliability even across the full TD matrix, and in gen-
eral exhibits much greater reliability than the MSC subjects,
each of whom have less than half the data quantity of RP.
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Figure 1. Individual and group patterns of latency structure. (A) Weighted lag projection maps from data averaged over individuals (MSCavg; left) and from one separate
individual, “RP” (right). Weighted lag projections are one-dimensional representations of latency structure computed as a column-wise weighted mean of the time

delay matrix. More strongly correlated regions are given greater time delay weights (see Methods). (B) Weighted lag projection maps for each of the MSC subjects. Note
larger lag projection values in individual as compared to MSC averaged results, likely attributable to inter-subject variability in the latter.
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Figure 2. Spatiotemporal structure of RSNs shows similarities and differences between the group and individual. Seed-based lag maps reflect each vertex’s lag with

respect to the seed region. Seeds were placed in the dorsolateral prefrontal cortex (A) and precuneus (B) (white circles outlined in black). Maps are thresholded at
zero-lag correlation r > 0.2. (A) The group average (left) and an individual, RP (right) show similar lagged relationships across distributed regions of the frontoparietal
control network. (B) The group (left) and RP (right) also exhibit similar spatiotemporal features within the default mode network; however, the medial prefrontal cortex
(pink arrow) is a notable exception.

Split-half similarity of lag projections (Fig. 3B), which are more
stable representations of latency structure, further supports the
existence of stable individual-specific features in latency struc-
ture. For comparison, Figure 3C shows a similarity matrix for FC
computed from the same data; lag and FC similarity results are
summarized in Figure 3D.

Note that for all comparisons involving the MSC average,
the MSC average was computed using all 100 sessions in order
to maintain a consistent comparator. In practice, removing the
split-half of interest from the MSC average before computing
similarity yields comparable results (z(r) values in Figure 3D
corresponding to correlation with MSCavg are decreased by
(mean ± standard deviation) 0.122 ± 0.008 for the “all pairs” TD
condition, 0.021 ± 0.007 for lag projections, and 0.007 ± 0.002 for
FC after removal).

Findings thus far point to sampling variability as the primary
obstacle to studying latency structure in individuals. To answer
the question of how much data is needed to resolve measures of
BOLD spatiotemporal structure in individuals, we computed the
spatial correlation between measures generated from one half
of RP’s data with increasing quantities of the other half, as done
previously for FC (Laumann et al. 2015). Results are displayed
in Figure 4. These plots show that a substantial quantity of
data is required to stabilize the full TD matrix, which includes
TD estimates between many weakly correlated region pairs.
Restricting the analysis to moderately correlated region pairs
can dramatically decrease data requirements. Further, weighted
lag projection maps at 6 mm-resolution can achieve a corre-
lation of 0.8 with ∼25 min of data. FC matrices, as discussed
above, are more stable than each of these measures of latency
structure. Importantly, it should be noted that reliability in RP
is limited by known systematic differences in the state of the
subject across different scanning days (e.g., fed vs. fasted and

caffeinated vs. non-caffeinated; see Methods) (Laumann et al.
2015; Poldrack et al. 2015), which are associated with differences
in latency structure (Fig. S1).

Patterns of Intra- and Inter-individual Variability

To further investigate factors affecting intra- and inter-
individual consistency of latency structure, we computed the
standard deviation of each TD pair (TDstd) across sessions
(within each subject) and across subjects (averaged across
sessions). We examined regional patterns of variation along
these two dimensions by computing the mean TDstd at each
vertex; these patterns are displayed in Figure 5. Given the
low reliability of lag estimates derived from single sessions,
intra-individual variability may be expected to reflect sampling
error rather than true day-to-day variance in neural activity.
Indeed, we found that the spatial topography of observed
intra-individual variability in latency structure can be largely
predicted by the regional topography of mean FC magnitude
(r = −0.91; Fig. 5A, lower). Thus, because TD sampling variability
is inversely related to correlation magnitude (Raut et al. 2019),
regions that are strongly correlated (or anti-correlated) with
large portions of the brain—such as regions in the default mode
network—tend to show less variability in lag estimates across
sessions. Despite 30-min sessions in MSC subjects, mean TD
standard deviation across sessions and mean FC magnitude
were still strongly negatively correlated across the brain
(r = −0.93 ± 0.02 for MSC subjects). Importantly, this topography
relating to FC magnitude is distinct from the topography of intra-
individual variability in FC, which is most apparent in motor and
visual areas (Laumann et al. 2015).

To examine inter-individual variability, we used the full
300 min of data obtained in each MSC subject. Regional
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Figure 3. Specificity and reliability of BOLD spatiotemporal structure in individuals. (A) Split-half similarity matrices computed for TD matrices from each of the MSC

subjects and RP. Each element in these matrices is a Pearson correlation coefficient between half of one subject’s data and half of another (or the other half of the
same) subject’s data. The final row/column reflects correlations with the MSCavg. The left panel includes all time delays (i.e., the full TD matrix). In the middle panel,
time delays corresponding to region pairs with zero-lag correlation magnitude <0.2 (as determined by the MSCavg) are excluded from the similarity computation.
Excluding unstable time delays in this way improves within- (on-diagonal) and inter-individual (off-diagonal) correspondence and makes individual-specificity more

apparent (comparison of on-diagonal blocks versus the final row/column). Reliability and individual-specificity are further augmented by increasing the correlation
threshold to 0.4 (right). (B) Split-half similarity matrices for lag projections—both unweighted (left) and weighted (right) column-wise means of time delay matrices,
where weighting is with respect to zero-lag correlation magnitude. Lag projections, particularly when weighted, are relatively stable measures of latency structure and
also exhibit individual-specificity. (C) Split-half similarity matrix for the full FC matrix from each subject, which is more stable than measures of latency structure. (D)

Summary and comparison of intra-individual (red), inter-individual (blue) and individual-to-group (black) similarity for different spatiotemporal measures, represented
as Fisher z-transformed correlation coefficients. Intra-individual, inter-individual, and individual-to-group similarity were separately compared for both TD matrices
computed across the different FC thresholds and for unweighted and weighted lag projections. Statistical significance was assessed by two-tailed paired t-tests (N = 11;
∗∗∗P < 0.001; n.s., not significant).
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Figure 4. Data requirements for different measures of BOLD spatiotemporal structure. (A) Example TD matrices and weighted lag projections computed from two
randomly split halves of RP’s data. Rows and columns of the first half TD matrix have been sorted from early-to-late, and by network affiliation following (Laumann

et al. 2015). Half 1 sorting was applied to the TD matrix from Half 2. Note largely orthogonal relationship of latency structure to RSNs manifesting as a wide range
of TD values within matrix blocks (Mitra et al. 2014). Also note that early (late) regions tend to be early (late) in both within- (on-diagonal) and between-RSN (off-
diagonal) relationships (Mitra and Raichle 2018). (B) Correlation of spatiotemporal structure from one half of RP’s data with the spatiotemporal structure computed
from increasing amounts of data drawn from the other half. Correlation is computed for several measures of spatiotemporal structure: full TD matrix (pink), TD matrix

excluding |FC| < 0.2 (orange), TD matrix excluding |FC| < 0.4 (red), unweighted lag projection (blue), weighted lag projection (black), and the full FC matrix (green). For FC-
based thresholding, FC is determined by the FC matrix computed over all RP data. Correlation curves are represented as mean (solid line) and SD (shaded surrounding
area) of correlation from 100 random samplings of the 88 ten-min sessions.
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Figure 5. Regional patterns of variability in latency structure. (A) Upper: Map for RP reflecting, for each vertex, TD standard deviation (TDstd) across sessions and
subsequently averaged across all of the vertex’s TD relationships (column-wise mean of TDstd). Lower: Each vertex’s mean zero-lag correlation magnitude. The strong
inverse correlation between these maps (r = −0.91) implies that regions that exhibit the most session-to-session TD variability tend to have weaker correlations in
general, making their TD relationships more prone to sampling variability. (B) Upper: Map reflecting column-wise mean of TDstd, as in (A), but where TDstd is computed

across all MSC subjects rather than RP sessions. Lower: Each vertex’s mean zero-lag correlation magnitude, computed from the MSC average. Despite 300 min of data
per subject, there is still contribution of sampling variability (r = −0.27 between upper and lower maps). However other sources of variability, such as anatomical, are
now apparent.

inter-individual variability is shown in Figure 5B. While this
pattern is still inversely correlated with mean FC magnitude
as determined by the MSC average (r = −0.27), sources of
variability other than sampling error now are prominent.
One such source is likely anatomical variability—as seen,
for example, at the temporoparietal junction (Mueller et al.
2013). Anatomic variability may, in part, reflect imperfect

registration of individuals to the fs_LR atlas surface (Van
Essen et al. 2012). The map of inter-individual TD variability
also bears some resemblance to that of inter-individual FC
variability, as both feature high values in temporoparietal
junction, dorsolateral prefrontal cortex, and lateral visual areas
(Mueller et al. 2013; Laumann et al. 2015). Regions of high
variability in lag and correlation structure may reflect, to
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varying degrees, individual differences in anatomy or functional
organization.

Consistent Features of Latency Structure
Across Individuals

Despite robust individual differences, it is evident from Figure 1
that many features of latency structure are similar across sub-
jects. To determine the consistency in location of early and
late regions, we computed spatial overlap by summing, across
individuals, binarized maps reflecting the earliest 15% and latest
15% of vertices in each individual’s lag projection. These overlap
maps are shown in Figure 6. Early regions exhibit a high degree
of overlap, with multiple regions present in all 11 subjects.
Regions that tend to be among the earliest across subjects local-
ize to inferior frontal gyrus, lateral premotor cortex, frontal eye
fields, dorsal anterior cingulate/pre-supplementary motor area,
and retrosplenial cortex, as well as the left anterior insula. The
majority of these regions are recruited across a wide range of
behavioral paradigms studied with task-based fMRI (Dosenbach
et al. 2006; Duncan 2010; Nelson et al. 2010; Yeo et al. 2015);
the significance of this correspondence is considered in the
Discussion. Late regions show substantially less overlap across
subjects but include visual cortex, the inferior temporal gyrus,
and orbitofrontal cortex.

Consistent Relationships Between Latency Structure
and Correlation Structure

Notably, the highly consistent early regions shown in Figure 7
are not all associated with the same functional network. This is
in agreement with prior findings indicating that conventional
RSNs each comprise early and late regions separated by ∼1 s
(Mitra et al. 2014) (also see seed-based lag maps in Fig. 2 and time
delay matrix in Fig. 4). In principle, each network may have its
own early and late regions; alternatively, a smaller set of early
and late regions may span multiple networks. Visual inspec-
tion of Figure 7 suggests the latter possibility: early regions in
particular tend to avoid the large patches of cortex associated
with single functional systems, and instead are positioned near
the boundaries of multiple RSNs. For example, consistent early
regions are absent from most of sensorimotor cortex but localize
focally to the caudal portion of dorsolateral prefrontal cortex,
which overlaps premotor and attentional areas in addition to the
ventral motor strip (Fig. 6). Likewise, the DMN is largely devoid of
early regions save for the retrosplenial cortex (Mitra and Raichle
2018), which is proximal to extrastriate visual cortex and areas
related to the processing of contextual, visuospatial information
(Bar and Aminoff 2003; Gilmore et al. 2016). Thus, early regions
appear to fall largely within previously reported zones of high
“community density (CD),” or cortical regions where multiple
RSNs are in close spatial proximity (Power et al. 2013).

To quantitatively assess the relationship between temporal
latency and RSN proximity, we computed CD as done previously
(Power et al. 2013). Thus, putative RSNs were first identified in
each subject by applying a commonly used community detec-
tion algorithm to the thresholded zero-lag correlation matrix
(Rosvall and Bergstrom 2008; Power et al. 2011). At each vertex,
the number of nearby communities (RSNs) was averaged across
a range of correlation thresholds (edge densities), accounting
for the inherently hierarchical organization of RSNs. Figure 7B
displays an example CD map computed from the MSC average
correlation matrix. Thresholding this map by a mask of the

earliest 5% of regions in the MSC average weighted lag projec-
tion reveals relatively high values of CD (Fig. 7C). Figure 7D–F
displays similar results for the individual, RP. In each individual
we computed the mean CD value within progressively later 5%
bins of the latency-sorted weighted lag projection. The resulting
CD curves as a function of increasing latency are displayed
in Figure 7G, which demonstrates, in each individual, a clear
bias for early regions to localize to zones of high CD (P < 0.05,
Bonferroni correction for 20 bins). Regions that are neither very
early nor late tend to exist in regions with significantly below-
average CD. Interestingly, this bias toward low CD regions is not
present for the latest regions.

The above described finding suggests that the activity of
early regions may be associated with that of multiple networks,
rather than strongly associated with a single network. To test
this, we repeated the above analysis, replacing CD with the graph
metric of participation coefficient (PC) (Guimerà and Nunes
Amaral 2005), as computed previously for fMRI correlations
(Power et al. 2013) (eq. 10). PC quantifies the extent to which
the associations of a node (here, the strongest correlations of a
vertex) are distributed uniformly among communities (RSNs).
Results displayed in Figure 7H confirm that early regions in
each individual exhibit strong correlations more uniformly
distributed among RSNs, and progressively later regions show
significantly below-average PC values (with no consistent lag:
PC relationship for the latest regions) (P < 0.05, Bonferroni
correction). Conventional interpretation of high PC is that
such nodes are vital for connecting distributed communities
(Bertolero et al. 2017); however such an interpretation is at least
partially confounded in BOLD data by spatial autocorrelation.
Thus, although this result confirms that the time series of early
regions exhibit characteristics of multiple, rather than single
RSNs, high PC does not necessarily imply a relationship with
multiple networks beyond spatial proximity.

Regions with near-zero lag projection values are preferen-
tially localized to low CD (and low PC) regions; in theory, this may
be a trivial result of near-zero-lag regions being less widely corre-
lated with the rest of the brain. That is, regions that do not have
robust relationships with most of the brain may be less likely to
be very early or late as indicated by the lag projection map, which
reflects each region’s mean temporal relationship with respect
to all other regions in the brain (although this scenario is less
likely for correlation-weighted lag projections, as used here). To
test this possibility, we repeated the above analyses with “node
strength,” computed for each vertex as the sum over rows of the
absolute value FC matrix. None of the 20 latency bins exhibited
node strength values that significantly deviated from the mean
(P > 0.05, Bonferroni correction). Thus, the preferential location
of apparent cortical “source” regions proximal to multiple RSNs,
as well as their shared signal with multiple networks, is not
explained by a confounding relationship between lag projection
values and correlation magnitude.

It is also conceivable that long-latency regions appear less
strongly associated with single networks simply because net-
work structure is defined here on the basis of the zero-lag corre-
lation matrix, rather than a correlation matrix that accounts for
temporal delays (peak-lag correlation matrix). For this to be true,
the zero-lag and peak-lag correlations should materially differ.
Importantly, this is not the case for BOLD time series (which
are essentially restricted to frequencies below 0.1 Hz) within the
range of lags studied here (± 4 s). To empirically verify, we com-
puted, for each of the 100 sessions comprising the MSC dataset,
the correlation coefficient between the (Fisher z-transformed,
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Figure 6. Consistent features of latency structure across individuals. Spatial overlap of the 15% earliest (upper) and 15% latest (lower) regions, based on lag projections
shown in Figure 1. The earliest regions show the greatest topographic consistency across subjects. Note high consistency in regions concerned with organizing action,
including several premotor areas and anterior insula.
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Figure 7. Early regions preferentially localize to areas proximal to multiple functional systems. (A) RSN parcellation computed from the MSC average correlation matrix,

as previously published (Gordon et al. 2017c), provided for reference. (B) Upper: Community density map for the MSC average, averaged across correlation thresholds or
“edge densities” (see Methods). Higher values indicate proximity to a greater number of RSNs. Lower: Participation coefficient map for the MSC average, averaged across
correlation thresholds. (C) Upper: MSC average community density (upper) and participation coefficient (lower) maps in (B), thresholded by the earliest 5% of vertices

in the MSC average weighted lag projection (shown in Fig. 1). (D–F) Same as (A–C), but for the individual subject RP. RP RSN parcellation, provided for reference, is from
Laumann et al. (Laumann et al. 2015). (G) Standardized community density, for each individual, as a function of increasing latency. Black opaque curve represents
average curve across individuals. Community density was averaged into 5% bins spanning the range of lag projection values, ordered from early-to-late. One-sample
t-tests determined, for a given latency bin, mean community density across individuals that differed from the expected value. (∗P < 0.05 following Bonferroni correction

for 20 bins). (H) Similar analysis as in (G), but for participation coefficient instead of community density.
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upper triangular) zero-lag and peak-lag correlation matrices.
This value exceeded 0.99 in all 100 sessions (mean ± standard
deviation = 0.9963 ± 0.0014; range = [0.9921, 0.9983]). Thus, net-
work construction from zero-lag, rather than peak-lag correla-
tions does not account for the tendency of near-zero-latency
regions to correlate more strongly with—or exist well within the
bounds of—single functional networks.

Discussion
The analysis of resting-state fMRI has been largely focused
on zero-lag FC, computed either using Pearson correlation
(Biswal et al. 1995) or spatial independent component analysis
(Beckmann et al. 2005). Nevertheless, large-scale propagation
dynamics in resting-state fMRI have also been studied using a
variety of analytic approaches (Sun et al. 2005; Garg et al. 2011;
Majeed et al. 2011; Friston et al. 2013; Friston et al. 2014; Gilson
et al. 2016; Schwab et al. 2018; Casorso et al. 2019). These studies
have provided compelling evidence of spatiotemporal dynamics
in BOLD time series not captured by zero-lag correlation
(Liégeois et al. 2017). Here, we demonstrate that widespread
latency structure revealed by pairwise cross-correlation gen-
erally is consistent across individuals. At the same time,
statistically reliable individual differences also are present.
Inter-regional lag relationships in resting-state fMRI are not
predicted by zero-lag correlation (Mitra et al. 2015a). Thus,
in addition to the spatial organization of BOLD fluctuations
described by zero-lag correlation structure, temporal latency
structure represents another fundamental organizational prop-
erty of BOLD signals. The study of individual-specific organiza-
tion in intrinsic brain activity, as well its relation to behavior or
pathology, may therefore benefit from the analysis of BOLD time
delays.

Robustness of Temporal Latency Structure
Within Individuals

To date, studying brain-wide temporal latency structure has
made use of large datasets in order to overcome sampling vari-
ability, leaving undetermined the extent to which such struc-
ture is apparent at the individual level. The present finding
of reproducible temporal latency structure in highly-sampled
individuals suggests that, like correlation structure, this tem-
poral structure is a fundamental mode of organization present
in spontaneous brain activity. As is apparent in large group
averages (Mitra et al. 2014), we find that temporal latency struc-
ture is largely orthogonal to functional networks (Figs. 1 and
4), with a range of delays apparent both within and between
networks. One apparent exception to this observation is the
relatively uniform precedence of activity in the visual network
relative to the somatomotor network seen in RP (Fig. 4); this
is likely attributable to RP being scanned in the eyes-closed
state, which has previously been shown to increase relative
earliness of resting-state BOLD signals in visual cortex (Mitra
et al. 2014). Along with latency changes related to caffeine and
food consumption (Fig. S1), these differences highlight the sensi-
tivity of BOLD latency structure to arousal and neuromodulation.
Given these state differences, it is likely that true day-to-day
variance in neural latency structure also contributes to inter-
session variability, although this source of variability would be
dominated by sampling error in conventional data quantities
(Raut et al. 2019).

Implications of Reproducible Individual Differences in
Latency Structure

There is growing interest in and appreciation for individual
differences in the spatial organization of functional networks,
as studied with rsfMRI (Mueller et al. 2013; Laumann et al.
2015; Braga and Buckner 2017; Gordon et al. 2017c; Gratton
et al. 2018; Kong et al., 2018; Marek et al. 2018). The presence
of individually-specific patterns of latency, particularly in the
context of common zero-lag correlation structure (Fig. 2), adds
an additional level of complexity to the organization of spon-
taneous infra-slow activity in the human brain. For example,
to the extent that infra-slow activity reflects a form of large-
scale neural communication, the present findings suggest that
individuals may differ not only in which regions tend to be
engaged simultaneously, but how, in terms of the direction of
signaling, this communication tends to take place. The source
of such individual differences in directed propagation currently
is unclear. We have previously shown that behavior can alter
resting-state latency structure (Mitra et al. 2014); thus, as has
been hypothesized for FC (Harmelech and Malach 2013), plastic
changes over time may lead to individual-specific biases in the
propagation of spontaneous brain activity. Nonetheless, it is
difficult to separate variability in lag relationships from spatial
variability in functional organization that is present at a range
of spatial scales. Although not the focus of the present work,
future analyses may attempt to account for some such spatial
variability in functional topography (e.g., Guntupalli et al. 2018)
prior to lag analysis. Incorporation of behavioral, task-evoked or
structural data will also likely aid interpretation of individual
variability in latency structure.

Studying Latency Structure in Individuals

Given sufficient data, a largely preserved temporal structure
of spontaneous infra-slow activity is observable in individual
humans, along with highly reproducible individual-specific fea-
tures (Figs. 1 and 2). However, despite the relatively large amount
of data collected in each of these individuals compared to stan-
dard ∼10-min acquisitions, some aspects of latency structure
remain subject to significant sampling variability, even in the
highly sampled MSC subjects, each with 300 min of data.

For a given data quantity, variance in latency structure is
largely determined by the strength of correlation (Raut et al.
2019). This relationship is evident in Figures 3 and 4, in which
reliability (and stable individual-specific features) is progres-
sively enhanced by excluding weakly correlated relationships.
On the other hand, the relationship between correlation and lag
variance may not always be obvious, and failure to appreciate
this relationship can lead to misinterpretation of findings. For
example, Figure 5A (upper) displays inter-session (intra-subject)
TD variance, which may be mistaken for neural day-to-day
variability in temporal relationships. However, by computing a
regional map of mean correlation magnitude (Fig. 5A, lower),
we demonstrate that this variability is largely attributable to
sampling error associated with estimating lag between weakly
correlated signals. Thus, it is crucial to consider sampling vari-
ability when studying lag structure, particularly in relatively
small datasets such as those collected in individuals.

How, then, may individual differences in latency structure be
probed? The necessity of acquiring atypically large quantities of
data to properly characterize individual-specific patterns of FC
is increasingly recognized (Laumann et al. 2015; Gordon et al.
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2017c). Datasets from highly-sampled individuals are likely to
provide opportunities to study more stable features of latency
structure, such as lag projections and lags between strongly
correlated regions (e.g., intra-network lags). How much data is
needed? We address this question in Figure 4. Weighted lag
projections can achieve good reliability (r > 0.9) with 100 min
of data—less than a third of the data available for MSC sub-
jects. In practice, precise data quantities required for estimating
spatiotemporal structure will depend on the resolution of the
analysis (e.g., vertex/voxel-level versus region-level) as well as
pre-processing choices (e.g., degree of spatial smoothing and
nuisance regression).

Functional Significance of Consistent Early Regions and
Their Proximity to Multiple RSNs

Despite the presence of fine-scale individual-specific patterns,
latency structure was generally similar across individuals.
Indeed, despite relatively low inter-individual similarity at the
voxel/vertex level, similarity of individual latency structure
with the group average was substantial (Fig. 3). By examining
mean latency of each region relative to the rest of the brain
(lag projection), we identified a relatively sparse, focal set of
very early regions present in most or all 11 individuals studied
here (Fig. 6). Interestingly, topographic correspondence was
much more consistent for early regions than late regions. This
suggests that the cortex contains multiple spatially constrained
generators of infra-slow fluctuations, the propagation of which
may be diffuse or distributed. Importantly, the lag projection
represents a likely superposition of multiple spatiotemporal
processes (Mitra et al. 2015a). Thus, early regions are not likely
to act as distributed generators of a single, brain-wide infra-slow
process, but may instead be associated with distinct widespread
phenomena.

Consistently early regions included lateral premotor areas,
the inferior frontal gyrus, the dorsal anterior cingulate/pre-
supplementary motor area, and anterior insula—all of which
belong to a previously described “multiple-demand system”
(Duncan 2010) comprising regions that exhibit task-related
activity across a wide range of behavioral paradigms (Dosenbach
et al. 2006; Nelson et al. 2010; Hugdahl et al. 2015; Yeo et al.
2015). In addition to these regions, we also identified the
retrosplenial cortex as a consistently early region of the default
mode network. Finally, we find the left anterior insula to be
asymmetrically early, despite all other early regions being
bilaterally symmetric. Interestingly, functional asymmetry in
this region has been widely observed (Craig 2009) and has been
previously interpreted in the context of parasympathetic and
sympathetic afferents to the left and right insula, respectively
(Craig 2005).

In addition to this behavioral relevance, we identify a bias
in the localization of cortical infra-slow sources in relation to
known functional systems. Each canonical RSN exhibits a range
of temporal delays (e.g., Figs. 2 and 4) (Mitra et al. 2014); this
suggests that the earliest regions of cortex may be expected to
be distributed among RSNs. Here, we find that cortical source
regions are further constrained by their preferential location
proximal to multiple networks. Several of these high commu-
nity density regions are small patches of cortex that are func-
tionally well-defined (e.g., anterior insula, frontal eye field) yet
are surrounded by regions associated with varying functional
systems. Considering their correspondence with several regions
commonly recruited by tasks, we suggest that these regions

share an ability to broadly influence cortical excitability. That
is, these regions may have, at least in theory, high “average
controllability” over widespread brain activity (Muldoon et al.
2016). Such an interpretation is consistent with early regions
additionally exhibiting high participation coefficient. Several
studies have applied this graph metric to fMRI data in order to
identify putative hubs supporting integration among RSNs (e.g.,
Power et al. 2013; Bertolero et al. 2015; Shine et al. 2016; Bertolero
et al. 2017; Hwang et al. 2017; Gordon et al. 2018). Note, however,
that due to spatial autocorrelation in BOLD data, this metric
may conflate to some degree true hub-like properties with those
reflected in community density (i.e., spatial proximity to multi-
ple functionally distinct regions).

Notably, task-evoked infra-slow responses in the early
regions identified here have also been shown to be relatively
early compared to the responses of other regions involved in
the same tasks (Goebel et al. 2003; Sun et al. 2005; Sridharan
et al. 2007; Bressler et al. 2008; Sridharan et al. 2008; Kayser
et al. 2009; Foster et al. 2012; Asemi et al. 2015; Spadone et al.
2015). Thus, broad influence of early task regions may also be
continuously exerted in spontaneous brain activity, or their
earliness observed here may be pertinent to ongoing behavior in
the “resting-state.” Additionally, the proximity of early regions
to diverse RSNs may confer privileged influence over the
excitability of disparate functional systems (e.g., the unique
position of retrosplenial cortex adjacent to visual cortex, the
medial temporal lobe, and the DMN, all of which share reciprocal
connections with this region (Vann et al. 2009)). Retrosplenial
cortex in particular was also found to exhibit early, high-
amplitude BOLD transients relative to other cortical regions
in association with hippocampal sharp-wave ripple events
(Ramirez-Villegas et al. 2015); thus, earliness in retrosplenial
cortex may result from this region being an early cortical
target of ripples, or alternatively, is a general feature that is
relevant for both cortico-cortical and hippocampal-cortical
communication. Finally, it is plausible that cortical infra-slow
sources share a unifying biological quality—such as affinity for
a particular neuromodulator or high density of afferents from
a certain subcortical population—that explains their temporal
characteristics, although this remains to be investigated. In any
case, BOLD fluctuations appear to propagate from regions of
high community density into major RSNs, as corroborated by
the tendency for regions of below-average community density
(i.e., those deep within a single major RSN) to be closer to zero-
latency in the lag projection.

When interpreting temporal relationships among fMRI sig-
nals, it must be appreciated that BOLD time delays specifically
reflect the propagation of infra-slow brain activity (Mitra et al.
2018). We have previously provided evidence for infra-slow prop-
agation in what might be considered a “feedback” direction,
or from the “recipient” to the “sender” of the higher-frequency
activity that may carry feed-forward information (Mitra et al.
2016). Using wide-field imaging we have observed that roughly
reciprocal directions of propagation between infra-slow and
delta (1–4 Hz) activity extend across mouse cortex (Mitra et al.
2018). The hypothesized tendency of infra-slow source regions to
initiate widespread changes in cortical excitability may serve to
coordinate—perhaps through phase-amplitude coupling (Monto
et al. 2008; Canolty and Knight 2010; Mitra et al. 2018)—incoming
information from widespread regions that is carried in higher
frequencies (Sirota et al. 2008; Bastos et al. 2015). Such a mecha-
nism may be advantageous for facilitating information transfer
in anticipation of behaviorally relevant information (Rajkai et al.
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2008; Ito et al. 2011; Kveraga et al. 2011). This is consistent with
the recruitment of many of these regions across a broad range
of behaviors (Dosenbach et al. 2006; Duncan 2010; Nelson et al.
2010; Yeo et al. 2015).

Several hypotheses may be formulated on the basis of the
present findings. For example, as we infer that source regions
may be particularly important for broadly influencing excitabil-
ity, it is expected that lesions to early regions are particularly
detrimental to normal brain function. To this end, a prior study
has demonstrated that regions of high community density and
high participation coefficient (specifically, several of the con-
sistent early regions identified here), when lesioned, portend
more severe and diverse behavioral consequences than those
of low community density (none of which overlap with the
consistent early regions) (Warren et al. 2014). Lesions to regions
of high participation coefficient were also shown to be par-
ticularly disruptive to normal brain functional network orga-
nization (Gratton et al. 2012). Thus, findings from lesion work
reinforce the hypothesized functional significance of the iden-
tified source regions, although studies incorporating greater
spatial diversity in lesion location are needed. Additionally, we
predict that stimulation of these focal source regions will lead
to more widespread changes in excitability or inter-areal rela-
tionships than stimulation of regions that are near-zero latency
or relatively late in their spontaneous infra-slow activity. Com-
bined neurostimulation and functional imaging (Chen et al.
2013) or intracranial electrophysiology (Shine et al. 2017; Khamb-
hati et al. 2019) have recently proven useful for characterizing
such directional large-scale interactions and are therefore well-
suited to test these hypotheses. Thus, future analyses incor-
porating behavior, lesion data, or neuromodulation may enable
further understanding of the contribution of early regions to the
spatiotemporal organization of brain activity.

Conclusion
We analyzed multiple rsfMRI datasets from highly-sampled
individuals to provide the first description of widespread
temporal latency organization in single individuals. We found
robust propagation patterns on the order of 1 s in each subject,
exhibiting both reliable individual-specific features and gross
resemblance across individuals. In particular, we identified
a common set of early regions across individuals that we
hypothesize, on the basis of present findings and the extant
literature, to be crucial for broadly altering cortical excitability.
Results suggest that latency structure is a prominent feature
of resting-state infra-slow activity and represents an additional
domain for studying individual variability in functional brain
organization.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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structure in large neuronal networks detected from cross-
correlation. Neural Comput. 18(10):2387–2413.

Schwab S, Harbord R, Zerbi V, Elliott L, Afyouni S, Smith JQ, Wool-
rich MW, Smith SM, Nichols TE. 2018. Directed functional
connectivity using dynamic graphical models. NeuroImage.
175:340–353.

Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski
KJ, Moodie CA, Poldrack RA. 2016. The dynamics of functional
brain networks: integrated network states during cognitive
task performance. Neuron. 92(2):544–554.

Shine JM, Kucyi A, Foster BL, Bickel S, Wang D, Liu H, Poldrack RA,
Hsieh LT, Hsiang JC, Parvizi J. 2017. Distinct patterns of tem-
poral and directional connectivity among intrinsic networks
in the human brain. J Neurosci. 37(40):9667–9674.

Siegel JS, Mitra A, Laumann TO, Seitzman BA, Raichle M, Corbetta
M, Snyder AZ. 2017. Data quality influences observed links
between functional connectivity and behavior. Cereb Cortex.
27(9):4492–4502.

Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M,
Buzsáki G. 2008. Entrainment of neocortical neurons and
gamma oscillations by the hippocampal theta rhythm. Neu-
ron. 60(4):683–697.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE,
Filippini N, Watkins KE, Toro R, Laird AR et al. 2009. Correspon-
dence of the brain’s functional architecture during activation
and rest. Proc Natl Acad Sci U S A. 106(31):13040–13045.

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann
CF, Nichols TE, Ramsey JD, Woolrich MW. 2011. Network
modelling methods for FMRI. NeuroImage. 54(2):875–891.

Spadone S, Della Penna S, Sestieri C, Betti V, Tosoni A, Perrucci
MG, Romani GL, Corbetta M. 2015. Dynamic reorganization of
human resting-state networks during visuospatial attention.
Proc Natl Acad Sci U S A. 112(26):8112–8117.

Sridharan D, Levitin DJ, Chafe CH, Berger J, Menon V. 2007.
Neural dynamics of event segmentation in music: converging
evidence for dissociable ventral and dorsal networks. Neuron.
55(3):521–532.

Sridharan D, Levitin DJ, Menon V. 2008. A critical role for the
right fronto-insular cortex in switching between central-
executive and default-mode networks. Proc Natl Acad Sci U S
A. 105(34):12569–12574.

Sun FT, Miller LM, D’Esposito M. 2005. Measuring temporal
dynamics of functional networks using phase spectrum of
fMRI data. NeuroImage. 28(1):227–237.

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl
B. 2004. A hybrid approach to the skull stripping problem in
MRI. NeuroImage. 22(3):1060–1075.

Ségonne F, Grimson E, Fischl B. 2005. A genetic algorithm for
the topology correction of cortical surfaces. Inf Process Med
Imaging. 19:393–405.

Talairach J, Tournoux P. 1988. Co-planar stereotaxic atlas of the
human brain. New York: Thieme Medical Publishers.

Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. 2012.
Parcellations and hemispheric asymmetries of human cere-
bral cortex analyzed on surface-based atlases. Cereb Cortex.
22(10):2241–2262.

Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J,
Kaila K. 2004. Infraslow oscillations modulate excitabil-
ity and interictal epileptic activity in the human cor-
tex during sleep. Proc Natl Acad Sci U S A. 101(14):
5053–5057.

Vann SD, Aggleton JP, Maguire EA. 2009. What does
the retrosplenial cortex do? Nat Rev Neurosci. 10(11):
792–802.

Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL.
2008. Evidence for a frontoparietal control system revealed
by intrinsic functional connectivity. J Neurophysiol. 100(6):
3328–3342.

Wang D, Buckner RL, Fox MD, Holt DJ, Holmes AJ, Stoeck-
lein S, Langs G, Pan R, Qian T, Li K et al. 2015. Parcellat-
ing cortical functional networks in individuals. Nat Neurosci.
18(12):1853–1860.

Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ, Sun
H, Petersen SE, Tranel D. 2014. Network measures predict
neuropsychological outcome after brain injury. Proc Natl Acad
Sci U S A. 111(39):14247–14252.

Xu T, Opitz A, Craddock RC, Wright MJ, Zuo XN, Milham MP.
Forthcoming 2016. Assessing variations in areal Organization
for the Intrinsic Brain: from fingerprints to reliability. Cereb
Cortex.

Yeo BT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner
RL, Asplund CL, Chee MW. 2015. Functional specialization
and flexibility in human association cortex. Cereb Cortex.
26(1):465.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR
et al. 2011. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J Neurophysiol.
106(3):1125–1165.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/30/3/1716/5559315 by guest on 15 O

ctober 2022


	Organization of Propagated Intrinsic Brain Activity in Individual Humans
	Introduction
	Materials and Methods
	MyConnectome Dataset
	Midnight Scan Club Dataset
	Distortion Correction
	fMRI Processing
	Generation of Individual Cortical Surfaces
	Surface Processing and CIFTI Creation
	Lag Analysis
	Similarity Analysis
	Community Detection and Graph Analyses

	Results
	Individual-specific Patterns in Brain-wide Latency Structure
	Spatiotemporal Structure within Conventional Functional Networks
	Specificity and Reliability of Latency Structure in Individuals
	Patterns of Intra- and Inter-individual Variability
	Consistent Features of Latency Structure Across Individuals
	Consistent Relationships Between Latency Structure and Correlation Structure

	Discussion
	Robustness of Temporal Latency Structure Within Individuals
	Implications of Reproducible Individual Differences in Latency Structure
	Studying Latency Structure in Individuals
	Functional Significance of Consistent Early Regions and Their Proximity to Multiple RSNs

	Conclusion
	Supplementary Material



