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It has been widely reported that intrinsic brain activity, in a variety
of animals including humans, is spatiotemporally structured. Spe-
cifically, propagated slow activity has been repeatedly demonstrated
in animals. In human resting-state fMRI, spontaneous activity has
been understood predominantly in terms of zero-lag temporal
synchrony within widely distributed functional systems (resting-
state networks). Here, we use resting-state fMRI from 1,376 normal,
young adults to demonstrate that multiple, highly reproducible,
temporal sequences of propagated activity, which we term “lag
threads,” are present in the brain. Moreover, this propagated
activity is largely unidirectional within conventionally understood
resting-state networks. Modeling experiments show that resting-
state networks naturally emerge as a consequence of shared pat-
terns of propagation. An implication of these results is that com-
mon physiologic mechanisms may underlie spontaneous activity
as imaged with fMRI in humans and slowly propagated activity
as studied in animals.
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Spontaneous (intrinsic) neural activity is ubiquitously present
in the mammalian brain, as first noted by Hans Berger (1).

Spontaneous activity persists in all physiological states, although
the statistical properties of this activity are modified by level of
arousal and ongoing behavior (2–8). Invasive studies in animals
using diverse techniques—for example, local field potentials (9–
11), voltage-sensitive dyes (12–15), and calcium imaging (4, 16,
17)—have demonstrated richly organized intrinsic activity at
multiple temporal and spatial scales. The most used technique
for studying whole-brain intrinsic activity in humans is resting-
state functional magnetic resonance imaging (rs-fMRI). Biswal
et al. first reported that slow (<0.1 Hz) spontaneous fluctuations
of the blood oxygen level-dependent (BOLD) signal are tem-
porally synchronous within the somatomotor system (18). This
basic result has since been extended to multiple functional sys-
tems spanning the entire brain (19–22). Synchrony of intrinsic
activity is widely referred to as functional connectivity; the as-
sociated topographies are known as resting-state networks (RSNs)
(23) and, equivalently, intrinsic connectivity networks (24).
Almost all prior rs-fMRI studies have used either seed-based

correlation mapping (25) or spatial independent components
analysis (sICA) (26). Critically, neither or these techniques
provide for the possibility that activity within RSNs may exhibit
temporal lags on a time scale finer than the temporal sampling
density. However, we recently demonstrated highly reproducible
lags on the order of ∼1 s by application of parabolic interpolation
to rs-fMRI data acquired at a rate of one volume every 3 s (SI
Appendix, Fig. S1) (27). Moreover, this lag structure can be
modified, with appropriate focality, by a variety of task para-
digms (27).
Investigations of rs-fMRI lag structure previously have been

limited by the concern that observed lags may reflect regional
differences in the kinetics of neurovascular coupling rather than
primary neural processes (28, 29). However, our previous di-
mensionality analysis demonstrated that there are at least two
independent lag processes within the brain (27). The neuro-
vascular model can account for only one of these. Hence, there
must be at least one lag process that is genuinely of neural origin.
We have since made significant methodological improvements

(Theory and Fig. 1) that enable a more detailed characterization
of lag structure in BOLD rs-fMRI data. We report our results in
two parts.
In part I, we present an expanded view of the lag struc-

ture within the normal adult human brain derived from BOLD
rs-fMRI data in 1,376 individuals. Specifically, we show that at
least eight orthogonal lag processes can be reproducibly demon-
strated. We refer to these processes as “threads” by way of analogy
with modern computer programming practice in which single
applications contain multiple, independent thread sequences.
In part II, we investigate the relation between lag threads and

zero-lag temporal correlations—that is, conventional, resting-
state functional connectivity. We find that, although there is no
simple relation between lag and zero-lag temporal correlation
over all pairs of voxels, apparent propagation is largely unidi-
rectional within RSNs. We also show that the zero-lag temporal
correlation structure of rs-fMRI arises as a consequence of lags,
whereas the reverse is not true. These results suggest that lag
threads account for observed patterns of zero-lag temporal syn-
chrony and that RSNs are an emergent property of lag structure.

Theory
We define the lag between two fMRI time series by computing
the cross-covariance function at intervals of one frame and
identifying the local extremum using parabolic interpolation (SI
Appendix, Fig. S1). This analysis assumes the existence of a single
temporal lag between regions. The validity of this assumption
depends on the fact that BOLD fMRI time series are aperiodic
(30, 31) (see SI Appendix, Lagged Cross-Covariance Curves Exhibit

Significance

It is well known that slow intrinsic activity, as measured by
resting-state fMRI in a variety of animals including humans, is
organized into temporally synchronous networks. The question
of whether intrinsic activity contains reproducible temporal
sequences has received far less attention. We have previously
shown that human resting-state fMRI contains a highly re-
producible lag structure. Here, we demonstrate that this lag
structure is of high dimensionality and consists of multiple highly
reproducible temporal sequences, which we term “lag threads.”
Moreover, we demonstrate that the well-known zero-lag tem-
poral correlation structure of intrinsic activity emerges as a con-
sequence of lag structure. Thus, lag threads may represent a
fundamental and previously unsuspected level of organization
in resting-state activity.
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a Single Peak for additional discussion of this point). Measured
lags at the group level (i.e., averaged over individuals) typically
assume values in the range ±1 s. Apparent propagation is inferred
on the basis of observed lag between two time series. This for-
mulation makes no assumptions regarding the path over which the
activity “propagates” between regions. Thus, “propagation,” as
defined here, entails lags on the order of ∼1 s in activity over
spatial scales on the order of centimeters.
As an aid to understanding the methodology, we describe our

approach to characterizing lag structure using a simple illustra-
tive model containing three orthogonal lag processes (threads)
propagating through six nodes (Fig. 1). Apparent propagation, as
defined here, is shown using synthetic time series with “1/f”
spectral content duplicated from real BOLD rs-fMRI data (31)
(see SI Appendix, Simulating Synthetic BOLD fMRI Time Series
for further detail) propagating through six nodes (Fig. 1A). The
superposition of the three thread processes is shown in Fig. 1B.
Analysis of the superposed time series observed at the six nodes
(using the procedure illustrated in SI Appendix, Fig. S1) yields
the time delay matrix shown in Fig. 1C; we call this matrix TD.
Having computed TD, we can compute a mean for each column,
using the previously described projection strategy for computing
BOLD rs-fMRI lag topographies (27). In the case of a single lag
process, the projection strategy is sufficient to recover the or-
dering (SI Appendix, Figs. S2 and S3). However, as shown in Fig.
1D, in the case of multiple superposed lag processes, the column-
wise projection generates an oversimplified approximation of the
dynamic system.
In the present work, to recover lag processes in multidimen-

sional time series, we use principal components analysis (PCA).

PCA assumes linear superposition of components. The validity
of this assumption is discussed in SI Appendix, Validity of Ap-
plying PCA to Recover Lag Thread Topographies. In each column,
i∈ f1,2, . . . ,6g, of the time delay matrix TD, the vector corre-
sponding to column i, is a lag map of the system with reference
to time series i. That is, the first column of TD is a lag map of
the system with respect to the first time series, and so on. Now,
consider the matrix, TDz, constructed by subtracting the mean of
each column from TD. The columns of TDz are zero-centered
lag maps. Application of PCA to TDz recovers the eigenspec-
trum representing the number of lag threads present in the
system. Fig. 1E shows that precisely three nonzero eigenvalues
are found in this illustrative case. The eigenvectors corre-
sponding to these nonzero eigenvalues can be used to recover
the topography of the lag threads; the node diagrams above the
nonzero eigenvalues in the Lower Right panel of Fig. 1 illustrate
the recovered lag processes. In the case of no delays (SI Ap-
pendix, Fig. S2) or only a single set of delays (SI Appendix, Fig.
S3), PCA finds zero or one nonzero eigenvalue. Thus, TD anal-
ysis is sufficient to assess the number of lag threads in the sys-
tem. Although Fig. 1 illustrates TD and TDz as square matrices
(i.e., the number of voxels in each lag map is equal to the number
of lag maps), lag thread computation is algebraically well de-
fined also when the number of voxels greatly exceeds the number
of lag maps.
To increase the signal-to-noise ratio (SNR) in real BOLD rs-

fMRI data, we produced (6 mm)3 voxel resolution lag maps from
time series extracted from 330 (15 mm)3 cubic regions of interest
(ROIs), uniformly distributed throughout gray matter (see SI
Appendix for further detail).
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Fig. 1. Illustration of lag threads. A shows three patterns of propagation (lag threads) through six nodes. The objective is to demonstrate the mapping
between lag structure and PCA. The illustration is not intended as a model of propagation in neural tissue. B shows the superposition of the three lag threads.
C shows the time-delay matrix (TD) recovered by analysis of the superposed time series in B, using the technique illustrated in SI Appendix, Fig. S1 (27). The
bottom row of C shows the latency projection of TD, computed as the average over each column. D illustrates the latency projection as a node diagram. This
projection represents nodes that are, on average, early or late. Critically, the projection fails to capture the full lag structure. E illustrates eigende-
composition of the covariance structure of TDz, derived from TD by removing the mean of each column (SI Appendix, Eqs. S4–S8). There are three nonzero
eigenvalues, indicating the presence of three lag threads. The eigenvectors corresponding to these eigenvalues are the thread topographies (shown
above the eigenvalues). The lag thread sequences defined in A were accurately recovered purely by eigen-analysis of TDz. It should be noted that the lag
threads in this illustration were a priori constructed to be mutually orthogonal (SI Appendix, Eq. S7). Hence, they were neatly recovered intact
by eigendecomposition of TDz. Also, although the nodes in this illustration are represented as foci, the algebra applies equally well to voxels, ROIs, or
extended, possibly disjoint, topographies.
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Methods
A large data set (n = 1,376) was obtained from the Harvard-MGH Brain
Genomics Superstruct Project (32) (Table 1). The 1,376 subjects were ran-
domly divided into two groups of 688 subjects to test the reproducibility of
our analyses. Please see SI Appendix for further details regarding pre-
processing and computational methods.

Results
Part I.
Existence and reproducibility of lag threads. Fig. 2 shows the topog-
raphy of four lag threads derived from real BOLD rs-fMRI data
acquired in the first group of 688 subjects. Blue hues indicate
regions that are early—that is, “sources” of propagated BOLD
activity—and red hues indicate regions that are late—that is,
“destinations” of propagated BOLD activity. The range of lag
values in each thread is ∼2 s. The threads exhibit a high degree of
bilateral symmetry. Interestingly, although specific anatomical
structures are often prominent sources or destinations within
threads, these topographies do not respect RSN boundaries (Fig.
2 and Movies S1–S4). BOLD rs-fMRI signals propagate in lag
threads both within and across RSNs. We have previously
reported this principle in relation to the distribution of lag values
over pairs of nodes in the brain (27).
Fig. 3A shows the first 20 eigenvalues derived by spatial PCA

of the lag threads derived from the first 688-subject group (the
first four threads of which are illustrated in Fig. 2). In Fig. 1E,
only nonzero eigenvalues correspond to lag threads, making it
easy to infer the dimensionality of the system. In real data, the
presence of noise means that all eigenvalues are nonzero; hence,
dimensionality must be estimated (33). Using an information
criterion, we estimated the dimensionality in Fig. 3A to be 8 (see
SI Appendix for further detail). To explore the reproducibility of
our results, we applied the same calculations to a second, sepa-
rate group of 688 subjects and obtained eigenspectrum and di-
mensionality estimates indistinguishable from the results shown
in Fig. 3A. Reproducibility of lag thread topographies across the
two groups of 688 subjects is illustrated in Fig. 3B. It is evident
that lag threads are highly reproducible across groups. The full
topographies of the first eight lag threads are reported in SI
Appendix, Figs. S7–S14.
Multiple lag threads in a selected number of regions. The high dimen-
sionality of the lag system shown in Fig. 3 theoretically could
reflect our specific choices of ROIs and lag map resolution (SI
Appendix, Fig. S5). To test this possibility, we constructed 17
ROIs by thresholding the eight thread maps to define prominent
sources and destinations. These ROIs are shown in Fig. 4A.
Many of these regions have been previously identified as critical
nodes that organize the brain’s ongoing activity (34). The cor-
responding 17 × 17 time delay matrices in the two groups of 688
subjects are each shown in Fig. 4B. Excellent reproducibility
is evident (Fig. 4C). Moreover, the maximum likelihood di-
mensionality estimate in both groups is 8 (Fig. 4D), precisely
the same result shown in Fig. 3A. Fig. 4 demonstrates that high
dimensional lag structure can emerge from a relatively small set
of ROIs as long as key regions of the brain are represented.

Seed-based lag maps for these ROIs are shown in SI Appendix,
Figs. S15–S24.

Part II.
Lag threads in relation to zero-lag temporal correlation. Having dem-
onstrated the existence and reproducibility of multiple lag
threads in human rs-fMRI data, we next investigated the relation
of lag threads to zero-lag temporal correlation structure. To this
end, we examined shared patterns of propagation across lag
threads. We did this by defining a matrix, ~L, whose columns
represent the topographies of the first eight lag threads (in units
of seconds, as in Fig. 2). We include eight lag threads on the basis
of the dimensionality estimate of lag structure (Fig. 3). ~L is a
6528 × 8 (voxels × threads) matrix, where each voxel has eight
latency values (in units of seconds), one for each thread. To find
common patterns of propagation across lag threads, we com-
puted, across all voxel pairs, correlations in latency values across
lag threads [ð1=kÞ~LΛ−1

k
~L
T
], where k is the number of lag threads

(SI Appendix, Eq. S9). The corresponding 6526 × 6526 (voxels ×
voxels) correlation matrix (Fig. 5A) reveals commonalities in
signal propagation across lag threads (see SI Appendix for ad-
ditional discussion). Critically, the voxel-wise correlation struc-
ture across lag threads (Fig. 5A) resembles the conventional
zero-lag temporal correlation structure of BOLD rs-fMRI (Fig.
5B) (RSN membership as in ref. 35). We quantitatively con-
firmed the similarity between the correlation structures in Fig. 5
A and B by computing the Pearson correlation between the
unique values in each matrix (r = 0.41). Thus, there is a corre-
spondence between common patterns of propagation across lag
threads (Fig. 5A) and the zero-lag temporal structure of rs-fMRI.

Table 1. Resting state fMRI data

Group 1 2

Number of subjects 688, 402 female 688, 383 female
Age in years 21.5 ± 3.1, SD 21.3 ± 2.7, SD
Scanner Siemens Tim Trio
Acquisition voxel size (3 mm)3

Flip angle 85°
Repetition time, s 3.00
Number of frames 124 × 2 runs
Citation Buckner et al., 2012 (32)

 s 1 s 1-

Thread 1 Thread 2 

Thread 3 Thread 4 

Fig. 2. Four lag threads computed from real BOLD rs-fMRI data in the first
group of 688 subjects. Blue and red hues represent, respectively, voxels that
are early or late relative to the thread mean. Each map is in units of seconds.
Note that brainstem and subcortical regions are early in thread 1, whereas
higher order cortical regions such as frontopolar cortex (seen in trans-
verse slices) are late. The significance of these observations is considered
in Discussion.
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The similarity between the matrices shown in Fig. 5 A and B
raises the question of whether, across pairs of voxels, lag is di-
rectly related to zero-lag temporal correlation. Hypothetically,
voxel pairs exhibiting shorter temporal lags could exhibit higher
temporal correlation at zero lag. However, a 2-dimensional his-
togram of zero-lag Pearson r versus lag for all voxel pairs (Fig.
5C) demonstrates no systematic relation. A second possibility is
that regions belonging to the same RSN are iso-latent (i.e., ex-
hibit the same lag value) in each lag thread. For example, the
entire default mode network could be early in one thread but
late in another. However, the topographies in Fig. 2 show that
this is not the case. Additionally, we have previously shown that
RSNs are not iso-latent. Rather, the range of intra- and inter-
RSN lag values is the same and no RSN is either early or late as a
whole (figure 9 in ref. 27). Therefore, the similarity between the
cross-thread correlations (Fig. 5A) and zero-lag BOLD rs-fMRI
temporal correlations (Fig. 5B) requires a more subtle explana-
tion. To provide the basis for this explanation, we introduce the
concept of “lag thread motifs.”
Lag thread motifs. We illustrate the concept of a lag thread motif
using a four-voxel model system with two lag threads (Fig. 6).
The overall pattern of propagation between the four voxels is
different in the two threads (Fig. 6A). However, the sequence of
propagation through voxels 1 and 2 is identical. Voxels 1 and 2,
therefore, constitute a lag thread motif: a set of regions in which
the sequence of propagation is the same across lag threads.
There are no other motifs in Fig. 6. The patterns of propagation
shown in Fig. 6A are realized in Fig. 6B using synthetic time
series with 1/f spectral content duplicating that of real BOLD rs-
fMRI data (31) (SI Appendix, Simulating Synthetic BOLD fMRI
Time Series). Again, although the overall pattern of propagation
differs between threads, the sequence of propagation between
the first two voxels is preserved (dotted arrows in the dark
red boxes).
We asked whether the thread motif model can explain the

findings in Fig. 5, specifically, the similarity between the cross-
thread correlations (Fig. 5A) and zero-lag temporal correlations
(Fig. 5B), and the absence of a systematic relation between zero-
lag Pearson r versus lag for all voxel pairs (Fig. 5C). We explore
this question in Fig. 7, which presents a simulation experiment
based on the model presented in Fig. 6, but scaled up to include
30 voxels, eight orthogonal lag threads, and two thread motifs
(see SI Appendix for details concerning generation of orthogonal
model lag threads; SI Appendix, Fig. S6 shows an explicit de-

scription of the model). Motif 1 propagates through voxels 1–5;
motif 2 propagates through voxels 6–10. Fig. 7A shows the voxel-
wise correlation across simulated lag threads (paralleling Fig.
5A). Voxels sharing a thread motif necessarily exhibit perfectly
correlated lag sequences (diagonal blocks labeled “1” and “2”).
Fig. 7B shows the 30 × 30 zero-lag temporal correlation matrix
(paralleling Fig. 5B) computed on the basis of the synthetic 1/f
time series representing the lag threads (see SI Appendix for
additional details). Thus, thread motifs are sufficient to induce
lag thread correlation structure, as in real rs-fMRI data (Fig.
5A). Moreover, the matrices shown in Fig. 7 A and B (synthetic
data) exhibit the same similarity as the matrices shown in Fig. 5 A
and B (real data). This similarity suggests that the existence of
shared lag thread motifs is sufficient to explain zero-lag temporal
correlations. We note that this model depends on the 1/f spectral
content of BOLD rs-fMRI time series. The existence of an as-
sociation between lag structure and temporal correlation re-
quires that the underlying time series exhibit some degree of
autocorrelation; lag structure would be dissociated from corre-
lation structure in a system in which the signals were comprised
of infinitely narrow impulses or white noise. Finally, Fig. 5C
indicates that there is no systematic relationship in real BOLD
rs-fMRI data across voxel pairs between conventional zero-lag
Pearson r and lag. This feature is present also in our simulation
(Fig. 7C). The low correlation between conventional zero-lag
Pearson r and lag in the synthetic data (r = –0.04) confirms that
thread motifs need not introduce a systematic relation between
these quantities. Therefore, the results of Fig. 7 (simulation)
suggest that the results shown in Fig. 5 (real data) can be
explained if thread motifs correspond to conventional RSNs—in
other words, if intra-RSN sequences of propagation are pre-
served across threads.
RSNs correspond to lag thread motifs. The simulation in Fig. 7 sug-
gests a model in which conventionally defined RSNs correspond
to thread motifs and implies two testable predictions. First, if the
sequence of propagation is preserved within thread motifs, it
follows that the dimensionality of intra-RSN lag structure should
be 1 (see SI Appendix, Fig. S3 for further explanation). Second,
although the simulation in Fig. 7 contains no systematic relation,
over all voxel pairs, between lag and zero-lag temporal correla-
tion (Fig. 7C), if we examine the relationship between zero-lag
Pearson r and lag considering only voxels within a motif, a sub-
stantial negative correlation emerges (r = –0.75; Fig. 7D). The
basis for this relation is that, within a single thread motif, more
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nearly synchronous time series must be more correlated. How-
ever, in general, threads propagate in multiple directions outside
of motifs (e.g., as in Fig. 6). Consequently, relations of the type
shown in Fig. 7D are obscured in Figs. 5C and 7C, because the
fraction of intramotif voxel pairs is a small fraction of all voxel
pairs. Therefore, if RSNs correspond to lag thread motifs, voxel
pairs within an RSN should exhibit a substantial negative cor-
relation between zero-lag Pearson r and lag (Fig. 7D).
We test these predictions in Fig. 8 A and B. Fig. 8A shows the

maximum likelihood dimensionality of the temporal lag struc-
ture calculated within RSNs as defined in ref. 35. As predicted by
the thread motif model, the maximum likelihood dimensionality
is 1 for all RSNs except the sensorimotor network (SMN). Fig.
8B shows the Pearson correlation derived from a scatter plot of
zero-lag temporal correlation versus lag over all intranetwork
voxels (as in Figs. 5C and 7C). Again, as predicted by the thread
motif model, there is a substantial negative correlation in every
RSN except the SMN. Therefore, although lag threads represent
various patterns of propagation with generally reciprocal sig-
naling across regions, within each RSN, BOLD rs-fMRI signal
propagation is largely unidirectional.
The apparently anomalous dimensionality result obtained

with respect to the SMN (Fig. 8 A and B) highlights an in-
teresting point concerning the correspondence between RSNs
and thread motifs. Conventional BOLD rs-fMRI analyses generally
agglomerate primary somatomotor and somatosensory areas
into a single RSN (22, 36) (see also Fig. 5B). Separation of motor
and sensory areas into distinct parcels has only recently been
achieved using a boundary mapping technique (37). In contrast,
lag threads sharply distinguish primary sensory versus primary
motor cortices (Fig. 8A). Primary motor cortex is earlier than
primary sensory cortex in most threads (Fig. 2, threads 3 and 4),
but the ordering is reversed in other threads (SI Appendix, Figs.
S11 and S12). This feature is also illustrated in Fig. 8A. Conse-

quently, the observed dimensionality of lag structure in the SMN
(as conventionally defined) is 2 (Fig. 8A). We verified that the
dimensionality of lag structure in the separated motor and sen-
sory components of the SMN is 1 in both cases.
Zero lag temporal synchrony emerges from lag structure. The previous
results suggest that RSNs correspond to lag thread motifs—
that is, that the sequence of propagation within RSNs is largely
preserved across lag threads. This finding raises the possibility
that zero-lag temporal synchrony (i.e., conventional functional
connectivity) within RSNs emerges from lag structure. To test
this hypothesis, we converted each of the first eight lag threads
extracted from real data (Fig. 2) into time series with the same
spectral content as BOLD rs-fMRI (as in Fig. 6B; see SI Ap-
pendix, Simulating Lag Threads for further details). We then
superposed these time series, weighted in proportion to their
respective eigenvalues (Fig. 4A and SI Appendix, Eq. S9), to
reconstruct synthetic BOLD rs-fMRI data with appropriate
spectral content and imposed structure derived only from lag
threads. The zero-lag temporal correlation matrix computed
from the reconstructed time series is shown in Fig. 8C. This
matrix is strikingly similar to the zero-lag temporal correlation
matrix computed from real BOLD rs-fMRI data (Fig. 5B). Fig.
8D shows a scatterplot of the real (Fig. 5B) versus reconstructed
(Fig. 8C) zero-lag temporal correlation values. Light blue and dark
blue dots in Fig. 8D represent inter-RSN and intra-RSN corre-
spondence, respectively. The scatterplot quantitatively demon-
strates substantial agreement between the zero-lag temporal
correlation structure of real and reconstructed data (r = 0.58). The
model better predicts intra-RSN correlation structure (r = 0.62)
versus inter-RSN correlation structure (r = 0.24); the implication
of this difference is at present not understood. Nevertheless, Fig. 8
C and D suggests that intra-RSN synchrony RSNs is an emergent
property of lag structure.

Anterior cingulate cortex 

Anterior insula 

Caudate 

Cerebellum 

Entorhinal cortex 

Frontopolar cortex 

Mediodorsal thalamus 

Mid-cingulate cortex 

Primary motor cortex 

Medial frontal cortex 

Posterior cingulate precuneus cortex 

Posterior insula 

Premotor cortex 

Putamen 

Supplementary  motor area 

Temporal cortex 

Parietal cortex 

r = 0.95 

-1

+1

+1sec, group 1 

se
c,

 g
ro

up
 2

 
Eigenspectrum derived from real 

data (688 subjects) 

Eigenvalue 
%

 v
ar

ia
nc

e 
ex

pl
ai

ne
d 

0

20

17

1

2

3 4

5 6
7

8

s
+1

-1 

Group 1 s
+1

-1 

Group 2 

A

B

C

D

-1

Fig. 4. High dimensionality lag structure derived from selected ROIs. A shows 17 ROIs obtained by thresholding the first eight lag thread maps derived in the
first group of 688 subjects (Fig. 2 and SI Appendix, Figs. S7–S14). These ROIs represent maximally early and late nodes over several lag threads. The color code
in A identifies ROIs without relation to latency. B shows the 17 × 17 time delay matrix (TD) corresponding to these ROIs in both groups of 688 subjects. These
matrices are exactly skew-symmetric (27). C shows a scatter plot of group 2 versus group 1 unique (upper triangle) TD values; excellent reproducibility is
evident. D shows the 17 eigenvalues of TDz in the first group of 688 subjects. The second group of 688 subjects yielded a nearly identical eigenspectrum (not
shown in D as the plotted points overlap). In both groups, the estimated dimensionality is 8, in agreement with Fig. 3.

Mitra et al. PNAS | Published online March 30, 2015 | E2239

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

SE
E
CO

M
M
EN

TA
RY

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
3.

22
3.

11
8.

24
 o

n 
O

ct
ob

er
 1

5,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

73
.2

23
.1

18
.2

4.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1503960112/-/DCSupplemental/pnas.1503960112.sapp.pdf


Fig. 8 demonstrates that zero-lag temporal correlation can
arise from patterns in lag. Fig. 9 demonstrates that lag structure
is not uniquely determined by zero-lag temporal correlation struc-
ture. To illustrate this point, we generated synthetic, multidi-
mensional time series with spectral content and second order
statistics (i.e., zero-lag correlation structure) matched to that of
the real BOLD rs-fMRI data (Fig. 9 A and B; see SI Appendix,
Zero-Lag Temporal Correlation Need Not Specify Lag Structure for
details). Fig. 9C shows that the average zero-lag temporal cor-
relation matrix, in both synthetic (blue) and real (red) data,
converges to the average structure derived from real data. Fig.
9D concerns lag and demonstrates a very different result. In
particular, the average time delay matrix computed over syn-
thetic data rapidly converges to the all zeros matrix (blue line in
Fig. 9D), whereas the TD matrix computed over real data con-
verges to a consistent, nonzero delay structure (red line in Fig.
9D). Fig. 8C demonstrates that lag structure can be used to re-
construct zero-lag temporal correlations, whereas Fig. 9 shows
that the reverse does not hold. The implication of these results is
that lag structure represents the more fundamental level of or-
ganization in rs-fMRI.

Discussion
Summary of Findings. The structure of human intrinsic brain ac-
tivity, as imaged with resting-state BOLD fMRI, has been un-
derstood predominantly in terms of zero-lag, temporal synchrony
within widely distributed functional systems (RSNs). We pre-
viously demonstrated that interregional lags are reproducibly

present in BOLD rs-fMRI data and that these lags are not at-
tributable to hemodynamic factors (27). We have substantially
expanded on our previous findings here. In part I, we demon-
strated that lag threads in human rs-fMRI exhibit multiple,
highly reproducible patterns of propagated activity (lag threads)
in BOLD rs-fMRI data (Figs. 2–4). We also showed that there
are most likely eight lag threads in our current analysis and that
eight lag threads can emerge from a small set of key ROIs (Figs.
3 and 4).
In part II, we investigated the relation between lag threads and

zero-lag temporal correlations in BOLD rs-fMRI. To this end,
we examined common patterns of propagation across lag threads
by computing voxel-wise correlations across eight lag threads
(Fig. 5A). We found that voxel-wise lag–thread correlations and
BOLD rs-fMRI zero-lag temporal correlations exhibit a similar
structure (Fig. 5). To explain this similarity, we hypothesize the
existence of lag thread motifs—that is, sequences of propagation
through subsets of regions that are shared across multiple
threads (Fig. 6). Simulation experiments showed that zero-lag
temporal synchrony within RSNs naturally emerges as a conse-
quence of lag thread motifs (Fig. 7). We also demonstrated that
conventionally defined zero-lag RSNs very likely correspond to
lag thread motifs (Fig. 8 A and B). Finally, we reproduced, to a
fair approximation, the zero-lag temporal correlation structure
of BOLD rs-fMRI using synthetic time series with imposed
structure derived only from lag threads (Fig. 8 C and D). The
reverse relation does not hold—that is, zero-lag temporal cor-
relation structure does not determine a unique lag structure (Fig. 9).
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Fig. 5. Voxel:voxel correlation structure of two different measures derived from the first group of 688 subjects. A shows the voxel-wise correlation matrix
computed over latency values in the eight lag threads (SI Appendix, Eq. S9). These correlations represent the extent to which voxel pairs exhibit similar latency
values across all eight lag threads. B shows the corresponding zero-lag temporal correlation matrix. Note similarity of block structure in A and B (Pearson r =
0.41). As there are 6,526 (6 mm)3 voxels in each map, the full correlation matrices are 6526 × 6526. The matrices displayed in A and B have been masked to
include only voxels with a ≥90% chance of belonging to one of eight RSNs (35) (SI Appendix, Fig. S5). Thus, the displayed matrices are 1065 × 1065. The rows
and columns are ordered by RSN: dorsal attention network (DAN), ventral attention network (VAN), auditory network (AUD), primary SMN, visual network
(VIS), frontoparietal network (FPC), language network (LAN), and default mode network (DMN). C displays a 2D histogram, compiled over voxel pairs, of lag
versus temporal correlation. All 6526 × 6526 voxel pairs are represented, excluding those within 1 cm of each other (to reduce the influence of local cor-
relations). Note no systematic relation, over voxel pairs, of lag versus zero-lag temporal correlation (r = –0.03). The same result is found using only the voxels
shown in A and B (r = –0.02).
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Hence, temporal synchrony can be understood as a consequence
of BOLD rs-fMRI lag structure.
It is important to note that, although the thread motif model

provides a basis for understanding how synchrony arises from
patterns in lag, this model is in no way imposed in the re-
construction in Fig. 8C; BOLD time series were reconstructed
purely on the basis of lag threads calculated from real data. We
conclude that lag threads represent a fundamental organizing
property of the brain’s intrinsic activity.

Physiology of Propagated Activity. A prominent concern regarding
lags in human rs-fMRI has been that all observed phenome-
nology could be attributable to regional variations in the kinetics
of neurovascular coupling (28, 29, 38–40). Such regional differ-
ences can be represented as an ordered sequence, as illustrated
in Fig. 1. Importantly, this set of temporal shifts can account for
only a single lag thread (27). Delayed signals in large venous
structures most likely contribute to the topography of lag thread
5 (SI Appendix, Fig. S11). However, the existence of at least eight
lag threads demonstrates that regional differences in neuro-
vascular coupling account for a minor component of BOLD rs-
fMRI lag structure.
Our results raise the question of what physiological mecha-

nisms might underlie propagation of slow spontaneous activity
over the whole brain. Propagation of low-frequency (<1 Hz)

spontaneous activity has been extensively described in the rodent
brain using various modalities, including whole-cell recordings
(9), local field potentials (5, 41, 42), voltage-sensitive dyes (11,
12, 43), and calcium imaging (16). We have previously shown
that spontaneous BOLD signal fluctuations correspond to low-
frequency (<1 Hz) local field potentials, also known as slow
cortical potentials (SCPs), which represent slow endogenous
changes in excitability (44, 45). Thus, we speculate that propa-
gation of activity in the BOLD signal is likely to represent prop-
agation of slow changes in neuronal excitability.
Propagated changes in neuronal excitability have been pre-

viously described in terms of UP/DOWN states (UDSs). UDSs are
slow (<1 Hz), spontaneous, subthreshold changes in neuronal
membrane potential. These membrane potential fluctuations are
effectively synchronous at a submillimeter spatial scale (15, 46, 47)
but exhibit multiple, complex patterns of propagation over larger
spatial scales (3, 4, 9, 15, 41, 48, 49), spanning thalamus (41),
striatum (50), and cortex (41). Although UDSs were initially as-
sociated with anesthesia and slow wave sleep, it is now known that
UDSs persist and propagate during quiet wakefulness (9, 11, 15).
The lags we found (on the order of ∼1 s over the whole brain) in
human spontaneous activity are comparable to UDS propagation
delays in rodents (9, 11, 12, 15, 41, 43, 51). There also are in-
triguing correspondences between the directionality of lags in the
BOLD signal and lags in UDSs in rodents. Reports by Hahn et al.
(9) and Sirota et al. (42) both document that slow fluctuations in
somatosensory neocortical areas lead activity in hippocampus by
less than 1 s. These findings agree with lags between hippocampus
and somatosensory cortex in a seed-based lag map derived from
entorhinal cortex (SI Appendix, Fig. S17).
Thus, UDSs might underlie BOLD rs-fMRI signal fluctuations

(6, 44, 52). However, some features of these two phenomena are
discrepant. In particular, UDSs are generally periodic with fre-
quency content in the range of 0.5–0.8 Hz (9, 15, 46), whereas
the resting-state BOLD fMRI signal is aperiodic and dominated
by frequencies ≤0.1 Hz (31). Whether or not UDSs are re-
sponsible for the present results, we note that there is no con-
sensus regarding the mechanisms underlying slowly propagated
activity. Proposed explanations include shifts in excitatory–
inhibitory balance (51), thalamo–cortical interactions (41), astro-
cytic gliotransmission (52, 53), and metabolic neuromodulators
such as adenosine (51, 54). Future work is required to definitively
elucidate the physiologic mechanisms underlying propagation in
the BOLD rs-fMRI signal.

Topography of Lag Threads.Each lag thread (Fig. 2, Movies S1–S4,
and SI Appendix, Figs. S7–S14) exhibits a unique, highly re-
producible (Fig. 3B) topography. It is evident that these topog-
raphies generally are bilaterally symmetric, as are most functional
systems and RSNs. Although fragments of functional systems can
be observed in the lag threads (e.g., frontopolar cortex compo-
nents of the frontoparietal control network in thread 1), the
contours of the thread maps do not correspond to the topogra-
phies of RSNs. This point relates to our previous demonstration
that RSNs as a whole are not iso-latent; rather, each RSN contains
a wide range of latency values and includes both early and late
nodes (27).
Several topographic features of the lag threads suggest func-

tional properties. Because these points are speculative, we con-
sider only the first two lag threads. In thread 1, the earliest
regions are brainstem, thalamus, hippocampus, and putamen;
late areas include frontopolar cortex and central insula. This
sequence suggests a “bottom–up” process in which activity begins
subcortically and propagates to progressively higher order areas
of the cerebral cortex (Fig. 2 and Movie S1). Another striking
finding is that the putamen is early, whereas the caudate is late.
See Movie S1 to visualize activity propagation from posterior
putamen to the head of the caudate. As far as we are aware, this
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respectively. A displays the voxel:voxel correlation matrix across latency
values in the eight simulated lag threads (as in Fig. 5A and SI Appendix, Eq.
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(as in Fig. 5B), computed from time series reconstructed on the basis of
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high zero-lag temporal correlation. C displays a scatter plot of the pairwise
lag versus pairwise zero-lag temporal correlation, as in Fig. 5C. Note no
systematic relation, for pairs of voxels, between lag and zero-lag temporal
correlation. Thus, thread motifs do not impose a systematic relation be-
tween these quantities. D shows a scatter plot as in C but limited to voxels
within the first thread motif (similar results are obtained with the second
motif). For voxel pairs within a motif, lag and zero-lag temporal correlation
are negatively correlated.
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finding has not been previously described. In thread 2, thalamus,
hippocampus, and brainstem are late with respect to cerebral
cortex—that is, opposite to their temporal position in thread 1.
This sequence suggests a “top–down” process in which activity
propagates from higher to lower centers (Fig. 2 and Movie S2).
However, other features—for example, late cerebellum, early
putamen, and late caudate—are common to threads 1 and 2. The
functional significance of specific lag thread topographies is
unknown and requires further study.

The Role of Lag Threads in Integration Versus Segregation. Activity
in the brain, at various spatial scales, has been discussed in terms
of two fundamental concepts: synchrony (8, 13, 55) and lagged
propagation (3, 4, 41, 56, 57). Taken to their logical extremes,
synchrony and lag are opposed in a simple system: A perfectly
synchronous system contains no lags, and a system with a single
set of lags is not synchronous (58) (SI Appendix, Fig. S3). The
fact that the brain’s spontaneous activity exhibits both of these
properties may be a manifestation of the dual functions of
neuronal segregation and integration (27, 59). Conventional
zero-lag resting-state functional connectivity analysis has pro-
vided a powerful tool for using synchronicity to map spatially
distinct functional areas (19–23, 37). However, functional par-
cellations do not explain how spatially segregated modules in the
brain become integrated (59). Lag threads demonstrate that
spontaneous activity exhibits apparent propagation both within
and between spatially segregated RSNs. Therefore, lag threads

may explain how spatially segregated networks can be integrated
over a time scale of seconds.
Conversely, lag threads pose their own problem: If spontaneous

activity is characterized by a lag structure, how does synchrony
arise? Our results suggest that lag thread motifs provide an answer.
Preservation of lag sequencing within certain regions of the brain
(i.e., RSNs) across multiple threads gives rise to zero-lag synchrony
within these systems (Fig. 8 C and D). Thus, the lag thread motif
model unifies the coexistence of synchrony (spatial segregation) and
lags (temporal integration) in the brain’s spontaneous activity.
The physiological functions served by lag threads remain un-

known, but previous work sheds some light on this matter. We
have shown that the lag structure of rs-fMRI is focally modu-
lated, in humans, following the performance of a motor task
(27), suggesting that the lag structure of intrinsic activity may be
involved in learning and memory. Indeed, the spatiotemporal
structure of UDSs (discussed in Physiology of Propagated Activity),
a potential correlate of lags in the BOLD rs-fMRI signal, has
been linked to consolidation and plasticity mechanisms (9, 15,
41, 60). Additional support for this perspective comes from
studies of neurodevelopment showing that precise patterns of
propagated intrinsic activity are essential for fine-tuning synaptic
connections (61–63). It is believed that persistence of this prin-
ciple into adulthood supports the brain’s capacity for lifelong
plasticity (63–66). A second hypothesis is that the cortex, like
the spinal cord, acts as a central pattern generator (67, 68) and
that patterns of propagated intrinsic activity represent neuronal
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programs that are recruited to perform tasks (4, 5, 69). Thus, lag
threads may form the basis for activity sequences that naturally
play out in responses to events.
Regardless of their specific functions, the reproducibility of lag

thread phenomenology suggests that this organizational feature
is essential to normal brain physiology and function. We hypoth-
esize that perturbed lag thread structure may underlie some neu-
ropathological conditions. If so, these conditions may not manifest
as altered conventional functional connectivity, as changes in lag
thread structure (for instance, altered thread hierarchy in Fig. 3A)
may not change zero-lag temporal correlations. Hence, an un-
derstanding of the physiologic functions of lag threads may lead to
better understanding of the brain in health and disease.

Limitations and Future Directions. The SNR of BOLD rs-fMRI is
limited. Accordingly, extensive averaging over very large subject
groups was required to obtain stable lag estimates at (6 mm)3

voxel resolution using (15 mm)3 reference ROIs. We are opti-
mistic that future improvements in BOLD fMRI (70), for in-
stance, increased temporal resolution, will allow detection of lag
threads in smaller populations, provided that voxel-wise SNR
remains adequate and preprocessing strategies effectively remove
artifact. Alternative approaches to studying rs-fMRI lags, at coarser
resolution, but with less sensitivity to SNR limitations, include de-
riving lag structure from selected ROIs, as in Fig. 4, and computing
lag projections, as in ref. 27.
A second caveat is that the presently reported correspondence

between lag thread motifs and RSNs (Fig. 8 A and B) reflects a
specific RSN parcellation (SI Appendix, Fig. S5) (35), although
the inferences derived from this result most likely depend only
minimally on the details on any particular parcellation scheme
(21, 22). We note that the correlation-based results (Figs. 5 A
and B and 8 C and D) are parcellation independent.
Third, as lag threads are simply principal components of lag

structure, they formally constitute only a basis set for lagged
activity. Consequently, the sign of the lag threads are, by defi-
nition, undetermined by a factor of ±1. Moreover, the assump-
tion of linear superposition in PCA implies that topologically
complex or nonlinear temporal sequence topographies cannot be
recovered. However, we did find that kernel PCA, a nonlinear
technique, recovers lag thread topographies (SI Appendix, Fig.
S28) quite similar to those shown in Fig. 2. Additionally, the sign
and topographies of seed-based lag maps (SI Appendix, Figs. S15–
S24) are uniquely determined. We used these maps to demon-
strate that lag thread topographies reasonably separate seed-based
lag maps into common clusters and that the sign of each lag thread
has most likely been correctly assigned (SI Appendix, Validity of
Applying PCA to Recover Lag Thread Topographies).
Fourth, there is an ambiguity concerning voxels with lag values

near zero in each lag thread. One possibility is that these voxels
are in the middle of the temporal sequence represented by the
lag thread. Alternatively, the voxel may not participate in the
temporal sequence. At present, we cannot distinguish between
these possibilities.
Finally, Fig. 8C shows a temporal correlation matrix computed

on the basis of reconstructed BOLD rs-fMRI time series. This
result reproduces many features of real data (Fig. 5B), but the
correspondence obviously is imperfect (Pearson r = 0.58; Fig.
8D). Importantly, we assumed that the spectral content of BOLD
rs-fMRI is uniform over gray matter and that lag threads su-
perpose linearly. These assumptions represent an approximation
(71), although the extent to which spectral shapes are regionally
dependent at frequencies below 0.1 Hz is uncertain (31). We also
restricted our reconstruction to only the first eight lag threads
deemed significant by maximum likelihood dimensionality analy-
sis. Although the remaining lag threads contribute less individual
variance, they may collectively play an important role in shaping
correlation structure. In view of these approximations, a more
complete model may be expected to provide a closer match
between a reconstructed and true correlation structure of BOLD
rs-fMRI time series. As our reconstruction relies only on lag
threads, we have also excluded other phenomena that may
contribute to the coordination of zero-lag correlation structure.
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