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Initially regarded as ‘noise’, spontaneous (intrinsic) activity accounts for a large

portion of the brain’s metabolic cost. Moreover, it is now widely known that

infra-slow (less than 0.1 Hz) spontaneous activity, measured using resting state

functional magnetic resonance imaging of the blood oxygen level-dependent

(BOLD) signal, is correlated within functionally defined resting state networks

(RSNs). However, despite these advances, the temporal organization of spon-

taneous BOLD fluctuations has remained elusive. By studying temporal lags

in the resting state BOLD signal, we have recently shown that spontaneous

BOLD fluctuations consist of remarkably reproducible patterns of whole brain

propagation. Embedded in these propagation patterns are unidirectional

‘motifs’ which, in turn, give rise to RSNs. Additionally, propagation patterns

are markedlyaltered as afunction of state, whether physiological or pathological.

Understanding such propagation patterns will likely yield deeper insights into

the role of spontaneous activity in brain function in health and disease.

This article is part of the themed issue ‘Interpreting blood oxygen

level-dependent: a dialogue between cognitive and cellular neuroscience’.
1. Importance of intrinsic activity
As observed by Hans Berger, in reporting on the first measurements of the human

electroencephalogram, spontaneous (intrinsic) neural fluctuations are a dominant

feature of the brain’s electrical activity [1]. In the context of studying task-evoked

neural responses, spontaneous activity was long considered merely to be ‘noise’.

Thus, most early studies of neural activity employed computational strategies to

suppress spontaneous activity. More recently, it has been appreciated that inves-

tigating spontaneous activity is essential for understanding brain function [2–4].

At the systems level, this paradigm shift was prompted by two major findings.

First, although the human brain represents only 2% of total body mass, its intrin-

sic activity consumes 20% of the body’s energy, most of which is used to support

ongoing neuronal signalling ([5–9], but see also [10]). Task-related increases in

neuronal metabolism are generally small (less than 5%) when compared with

this large intrinsic energy consumption (for a recent review, see [9]). Thus, to

understand how the brain operates, we must take into account the component

that consumes most of the brain’s energy: spontaneous activity.

The second set of findings has been derived from resting state functional mag-

netic resonance imaging (rs-fMRI) of the blood oxygen level-dependent (BOLD)

signal [11]. Biswal et al. used human rs-fMRI to discover that spontaneous infra-

slow (less than 0.1 Hz) fluctuations of the BOLD signal are highly correlated

within the somatomotor system [12]. This basic result has since been extended to

multiple functional networks spanning the entire brain ([13–17]; figure 1a,b).

Spatial correlations within intrinsic activity are widely referred to as functional con-

nectivity; the associated topographies are known as resting state networks (RSNs

[2]). The discovery of RSNs revealed that spontaneous activity is highly structured

and can be related to brain function in health [18–21] and disease [22–25].

Yet, despite these advances, functional connectivity analyses do not address

the temporal dimension of brain communication, that is, propagation of signals

between regions. Instead, the correlation measure (e.g. functional connectivity)

integrates over time to provide a static spatial view of brain organization
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Figure 1. A conceptual, evolving view of the spatio-temporal organization of spontaneous BOLD signal activity. (a) The first evidence of organization in spontaneous
BOLD signal activity was the discovery of functional connectivity, or zero-lag correlations, within RSNs, including the default mode network, motor network and
visual network, illustrated in that order from left to right. RSNs demonstrate that spontaneous activity carries a signature of network segregation. (b) Functional
connectivity illustrated in a zero-lag correlation matrix; each pixel depicts the correlation between a pair of voxels. Voxels are grouped into networks (RSNs) on the
basis of highly correlated spontaneous activity. (c) Propagation structure illustrated in a time delay (TD) matrix. Each pixel depicts the temporal lag between a pair of
voxels. The TD matrix reveals propagation of spontaneous activity between and within RSNs, a signature of network integration. (d ) The TD matrix propagation
structure is composed of multiple propagation sequences, or lag threads. Four lag threads are illustrated here, in mid-sagittal view. (e) Embedded within lag threads
are ‘one-way streets’ (or lag thread motifs), representing conserved regions of unidirectional propagation across distinct propagation sequences. ( f ) By analysing
propagation sequences (figure 3), we find that lag thread motifs correspond to and give rise to RSNs. DA, dorsal attention; VA, ventral attention; SM, sensory motor;
V, visual; FPC, fronto-parietal control; LA, language; DM, default mode.
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[18,20,26]. However, ample evidence of structured propa-

gated intrinsic activity has been reported in the mouse

using voltage sensitive dyes as well as genetically encoded

calcium imaging [27–33]. These observations raise the ques-

tion: can evidence of temporal propagation be found in the

spontaneous BOLD signal?
2. Dynamics in the resting state blood oxygen
level-dependent signal

Several approaches can be taken to understand BOLD signal

propagation. For example, vector autoregressive (VAR)

methods, including Granger causality [34,35] and dynamic

causal modelling [36,37], can be used to infer signal directional-

ity. Although these methods are highly effective for testing

causal models in small numbers of time series, VAR-based ana-

lyses have computational limits which prevent extending these

approaches to account for the tens of thousands of voxel time

series necessary to describe propagation in the whole brain [26].

Thus, we have opted to study BOLD signal propagation by

analysing temporal lags across the whole brain. Given a pair of
nodes, if the first node transmits a signal to the second, then

there will be a temporal delay (or lag) between the signals.

These temporal lags can be detected by computing lagged

correlation (or, equivalently, lagged covariance) curves

between time series pairs (figure 2). If there exists a non-zero

temporal delay which maximizes (or minimizes, in the case

of anti-correlation) the lagged correlation, we can then infer

directed propagation between the two voxels. The existence

of a non-zero-lag in peak correlation between voxels does

not reveal the route (e.g. direct or indirect) or biological

mechanism of propagation (see Future directions section for

further discussion). All we can conclude is the existence of

propagation through some mechanism. Despite this limitation,

lagged correlations are commonly used in the electrophy-

siology literature to characterize directed propagation/

communication between neuronal assemblies [38–41].
3. Temporal lags analysis
There is one technical hurdle that complicates applying

lagged correlations to resting state BOLD signals: the low
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Figure 2. Calculation of lag structure using lagged cross-covariance functions and parabolic interpolation. Lags are defined by analysis of time series derived from
two loci. (a) Two exemplar loci (both in the default mode network). (b) The corresponding lagged cross-covariance function. The range of the plotted values is
restricted to +15 s, which is equivalent to +4 frames (red markers) as the repetition time was 3 s. The lag between the time series is the value at which the
absolute value of the cross-covariance function is maximal. (c) This extremum can be determined at a resolution finer than the temporal sampling density by
parabolic interpolation (green line) through the computed values (red markers). This extremum (arrow, yellow marker) defines both the lag between time
series i and j (ti,j) and the corresponding amplitude (ai,j).
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temporal sampling density of fMRI. We can only empirically

calculate lagged correlations in intervals of the time between

measurements. If the signals of interest are sampled rapidly,

then the peak of the lagged correlation curve is well estimated

simply by finding its empirical peak. However, in most

conventional fMRI sequences, the temporal resolution is

one measurement every 2–3 s. To circumvent this problem,

we apply parabolic interpolation to lagged correlation

curves. This allows us to measure temporal lags at a resol-

ution finer than the temporal sampling density of our data

(figure 2). BOLD signal temporal lags computed through

interpolation are highly reproducible [26,42].

To analyse whole brain propagation, we extend this

approach to compute the temporal delay between every

pair of voxel time series in grey matter. The set of all such

delays forms a time delay (TD) matrix [26]. Figure 1c illus-

trates a TD matrix derived from rs-fMRI data collected in

100 awake, healthy young adults. The voxels comprising

the TD matrix in figure 1c are drawn from an RSN parcella-

tion as defined by Hacker et al. [43]. After sorting voxels

by cortical RSN affiliation, voxels within RSNs were then

sorted from ‘early’ to ‘late’. Blue hues indicate negative lag

values (i.e. when one voxel is earlier than another), whereas

red hues indicate positive lag values (i.e. when one voxel is

later than another). The diagonal blocks in the TD matrix rep-

resent propagation within RSNs (e.g. within the DMN, lower

right corner); the off-diagonal blocks represent propagation

among RSNs (e.g. between the DMN and DAN, upper

right corner). The TD matrix in figure 1c is highly reproduci-

ble at the group level in awake adults, as previously shown

using a cohort of nearly 1400 subjects [42] indicating that
the propagation structure of rs-fMRI data is highly conserved

across individuals.

Two key functional features are highlighted by figure 1c.

First, the range of temporal lags is approximately +1 s over

the entire cortex. Thus, the propagation speed of the spon-

taneous BOLD signal is much slower than classical axonal

transmission via myelinated fibre tracts, which transmit sig-

nals over tens to hundreds of milliseconds [44]. Instead, the

propagation speed of BOLD signal fluctuations is in the

range of propagated changes in regional cortical excitability

[32,39] (see Future directions section for further discussion).

Second, the TD matrix reveals equivalent propagation of

BOLD signal activity both within and among RSNs. No

RSN wholly leads or follows the others. Rather, there is reci-

procal signalling between every pair of RSNs. To gain an

intuitive appreciation of this pattern, note that a uniform,

well-ordered early-to-late organization is seen in every diag-

onal TD matrix block, representing ordered within-RSN

propagation. When we analysed CSF voxels (not shown

here; see Fig. 9 in [26]), we found intra-CSF voxels to be

much less well ordered even though they were analysed

identically to the true RSNs, indicating that the observed

intra-RSN lag structure is not mathematically imposed [26].

Each off-diagonal (cross-RSN) TD matrix block also contains

well-ordered early, middle and late components, indicating

ordered cross-network propagation. Again, this organization

is not seen in off-diagonal blocks involving CSF [26].

Critically, the mean value in each of the off-diagonal blocks

in the TD matrix is very nearly zero [26,45]. If one RSN were

systematically earlier than another RSN, the expected off-

diagonal block mean would be non-zero. For example, if the
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Figure 3. Lag thread motifs, or ‘one-way streets’, correspond to resting state network topographies. (a) Schematic of two lag threads propagating through four
voxels. The overall pattern of propagation differs in the two threads, but the sequences through voxels 1 and 2 are identical (red box). Thus, voxels 1 and 2 represent
a lag thread motif or ‘one-way street’. By contrast, the propagation directions between voxels 3 and 4 (blue box) are reversed across the two example threads,
depicting a ‘two-way street’. (b) The lag threads in (a) realized as time series. (c) Temporal ordering of the voxels in the illustrated lag thread schematic.
(d) Correlation of temporal orderings, across lag threads, for voxels 1 and 2. Note that the correlation is positive in the case of a ‘one-way street’ or motif.
(e) Correlation of temporal orderings, across lag threads, for voxels 3 and 4. Note that the correlation is negative in the case of a ‘two-way street’. ( f ) Voxel-
wise correlation matrix computed over latency values in the four lag threads derived from real data, as shown in figure 1d. Blocks of high correlation are
found on the diagonal, or intra-RSN, blocks, implying that BOLD signal propagation is largely unidirectional within networks. By contrast, negative correlations
(and lower positive correlations) are found in the off-diagonal, or inter-RSN, blocks, implying that cross-RSN propagation is generally bidirectional.
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default mode (DM) network were wholly leading or following

the dorsal attention (DA) network, then the off-diagonal block

of the TD matrix representing DM : DA lags would either be

wholly ‘blue’ or wholly ‘red’. Instead, what we observe is an

even distribution of blue and red. Hence, some components

of the DM network lead the DA network (blue), but other

components of the DM network follow the DA network

(red). This principle plays out in all cross-network off-diagonal

blocks in the TD matrix. Thus, infra-slow activity propagates

both within and among RSNs, and cross-RSN signalling is pre-

dominantly reciprocal. The reciprocal propagation patterns

between RSNs provide a possible framework for communi-

cation between networks which, traditionally, have been

considered distinct, spatially segregated entities.
4. Relationship between temporal and spatial
organization

The propagation (TD matrix, figure 1c) and RSN structures

(zero-lag correlation matrix, figure 1b) of the BOLD signal

highlight temporal and spatial features of brain organization,

respectively. However, both temporal lags and functional
connectivity are derived from precisely the same underlying

signal, raising the question: can we unite our descriptions of

space and time? Or, more specifically, do RSNs arise from

patterns of propagated activity, and, if so, how?

The simplest hypothesis is that voxels with the smallest

temporal delays comprise RSNs. That is, short temporal lags

could imply high zero-lag correlation. However, we found

no empirical relation between temporal lag and Pearson’s r
correlation over pairs of voxels in grey matter (Fig. in [42]).

The reason this relationship does not exist is that the range

of temporal delays within and among RSNs is quite similar

([26]; figure 2). If high correlations were associated with

shorter temporal delays, the range of the lags in the diagonal

blocks in TD matrix would have to be smaller than the

range of the lags in the off-diagonal blocks. As this is not the

case, a more complicated relation is required to unify our

description of RSNs and propagations.

We next explored whether RSNs emerge from patterns

embedded within propagation sequences. We can identify

individual propagation sequences in the data by applying

matrix decomposition to the TD matrix. In the same way

that matrix decomposition of a correlation matrix yields

spatial network topographies [46], matrix decomposition of
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the TD matrix reveals propagation sequences (figure 1d, [42]).

We refer to these propagation sequences as ‘lag threads’

by way of analogy with modern computer programming

practice, where single applications contain multiple,

independent thread sequences.

By examining lag threads, several features of BOLD signal

propagation become clear. First, based on an analysis of 688

subjects, we identified the presence of eight significant lag

threads or propagated temporal processes in rs-fMRI data

[42]. The first four lag thread topographies are depicted in

figure 1d. We found that lag thread propagation patterns

do not strictly respect RSN borders and that the propagation

patterns are bilaterally symmetric. Second, lag threads are

very consistent across independent groups of subjects. This

replicability is demonstrated in two groups of 688 subjects

in [42] and a group of 39 subjects in [45]. Thus, the propa-

gation structure of rs-fMRI data is defined by a set of

remarkably conserved, bilaterally symmetric propagation

sequences. This finding is in accordance with data collected

using voltage sensitive dyes and genetically encoded calcium

in mice and rats, where preserved patterns of slow, bilaterally

propagating processes have been described [27–33].

Having isolated lag threads from the TD matrix, we seren-

dipitously1 pursued the hypothesis that although in general

there is reciprocal signalling between brain regions (e.g. in

figure 1d, subcortical structures lead the cerebral cortex in

lag thread 1, but the reverse is true in lag thread 2), the direc-

tion of propagation within RSNs may be preserved across lag

threads. In other words, RSNs may represent ‘one-way

streets’ with respect to propagation of the spontaneous

BOLD signal. An example of a one-way street embedded in

lag threads in shown in the schematic in figure 3. In a

system where the propagation speed is fast relative to the fre-

quency of the signals, as is the case with the spontaneous

BOLD signal (whole brain propagation of the order of

approximately 1 s, fluctuations of the order of approximately

10–100 s), activity within ‘one-way streets’ will be highly

correlated at zero-lag (see Fig. 7 in [42]).

To investigate whether the ‘one-way streets’ explain the

emergence of RSNs from propagation patterns, we asked

three questions: (i) is there evidence for ‘one-way streets’ in

the spontaneous BOLD signal? (ii) Do these one-way streets

correspond to conventionally defined RSNs? (iii) Can RSNs

be recovered solely using the lag structure and spectral

content of the BOLD signal?

To answer the first two questions, we need a compu-

tational technique to detect ‘one-way streets’. Recognizing

that lag threads are simply propagation sequences that

order voxels from early to late, one-way streets can be recov-

ered by looking for correlations in voxel-wise temporal

ordering across lag threads (figure 3d,e). Intuitively, ‘land-

marks’ (e.g. voxels) on a one-way street are always visited

in the same order. Hence, regardless of whether the

one-way street is traversed early or late in a specific path

(e.g. lag thread), the ordering of landmarks will be highly

correlated over all paths (e.g. over all lag threads). When

we compute the voxel-wise propagation sequence correlation

across lag threads, we in fact find topographies of high corre-

lation, indicating the presence of one-way streets (figure 3f ).
We refer to these ‘one-way street topographies’ as ‘lag

thread motifs’. Comparing the propagation sequence corre-

lation matrix (figure 1f ) against a conventional zero-lag

(functional connectivity) correlation matrix (figure 1b), we
find substantial agreement [42]. Thus, not only do we find

evidence of ‘one-way street’ motifs in BOLD signal propa-

gation, these lag thread motifs match the topographies of

RSNs. Interestingly, the voxel-wise propagation sequence

correlation matrix also exhibits anti-correlations, predomi-

nantly in the off-diagonal blocks. These anti-correlations

correspond to ‘two-way streets’ (figure 3e), again demonstrat-

ing reciprocal signalling between networks.

Having found lag thread motifs (one-way streets) in

BOLD signal propagation patterns which correspond to

RSNs, we are left with the final question: can RSNs be recov-

ered solely on the basis of propagation patterns? We

approached this question through simulation. By construct-

ing synthetic resting state BOLD time series in which we

determined temporal structure, but did not constrain zero-

lag correlations, we found that the zero-lag correlation

matrix in the synthetic data is substantially similar to the

zero-lag correlation matrix derived from real data (Fig. 8 in

[42]). Hence, RSN organization can arise as a consequence

of the temporal organization of rs-fMRI data.

Critically, the reverse is not true, that is, the RSN organiz-

ation of the BOLD signal does not give rise to its temporal

structure. We can demonstrate this point by altering the

previous simulation to produce synthetic data in which we

pre-determine the zero-lag correlation structure, but not

the temporal structure. Comparing TD matrices, we found

that the real and synthetic data did not agree (see Fig. 9 in

[42]). The implication of this finding is that spatial RSN topogra-

phies emerge from patterns of propagation in the resting state

BOLD signal. That is, the spatial organization of the resting

state BOLD signal is a consequence of its temporal organization.
5. Neural origin of blood oxygen level-
dependent signal propagation

Despite the evidence for propagating low frequency activity

across multiple modalities [31,32,47,48], concern lingers that

regional variations in the kinetics of neurovascular coupling

could largely account for BOLD signal propagation [49,50].

We have previously articulated two reasons that BOLD

signal lags are likely of neural origin. First, we find focal

state-dependent changes in BOLD signal propagation.

These changes are found in normal physiology, such as

pre- versus post-motor learning [26] and sleep versus wake

[45], as well as pathophysiology, such as resting state data

in autism spectrum disorders (ASD) versus typical controls

[51]. A vascular explanation for this result implies focal

changes in the dynamics of neurovascular coupling found

during learning, wake versus sleep, as well as ASD. There

is no evidence of such systematic, long lasting, state-

dependent shifts in vascular kinetics [26,52]. By contrast,

altered neural communication has been implicated in learn-

ing, sleep, and ASD, supporting the view that changes in

BOLD signal propagation reflect neural activity. Second, a

fixed set of varying haemodynamic delays across the brain

can only account for one propagation sequence in the data

[26,42,53]. As the BOLD signal consists of multiple propa-

gation sequences [42,53], only a minor component of BOLD

signal propagation can be attributed to vascular effects.

The aforementioned arguments provide indirect evidence

for the neural origin of BOLD signal propagation. More

recently, Matsui and colleagues directly tested the basis of
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BOLD signal propagation through simultaneous optical ima-

ging of spontaneous fluctuations in neuronal calcium and

vascular haemoglobin (the optical equivalent of the BOLD

signal [54]) in the mouse [33]. Matsui et al. compared propa-

gation patterns in neural calcium versus the BOLD signal

using multiple analytic techniques, including computation

of TD matrices in both signals. In each analysis, Matsui

et al. found substantial agreement in propagation patterns

between neural calcium and haemoglobin, directly demon-

strating that BOLD signal propagation indeed reflects

neural activity [33].
Phil.Trans.R.Soc.B
371:20150546
6. Summary
Since the advent of fMRI, our understanding of spontaneous

activity has progressed from regarding it as merely noise, to

primarily focusing on spatially segregated RSNs (spatial topo-

graphies of signals correlated at zero-lag), to now, an

appreciation of its exquisite propagation structure. An in-

depth tutorial for applying propagation analyses to rs-fMRI,

including more discussion of pre-processing strategies required

for lags computations, can be found at: http://www.nil.wustl.

edu/labs/raichle/propagation_analysis.html. In particular,

fMRI data must be slice-timing corrected prior to temporal

lags analysis. Slice-timing correction is not currently

implemented in several extant publically available datasets,

including the human connectome project [55]. Thus, investi-

gators wishing to explore propagation analysis must ensure

their data has been slice-timing corrected.
7. Future directions
Patterns of propagated neural activity found in the resting

state BOLD signal open an exciting new avenue for under-

standing brain function. Here we summarize some of the

questions raised by our findings and the directions these

findings suggest for future research.

1. Biological mechanism: It is presently not known what biologi-

cal mechanisms underlie propagation of low-frequency

activity (whether detected using the BOLD signal or

electrophysiological means) [31,32,47,48]. Low-frequency

phenomenon have generally been understood as modu-

lations in cortical excitability [56–58] and previously

proposed mechanisms for such propagation include bal-

ance in excitatory : inhibitory activity [59], astrocytic

signalling [60,61], as well as fluctuations in cell metabolism

[62,63]. These findings suggest that observed BOLD signal

propagation likely corresponds to widespread, propagating

shifts in excitability, the mechanisms of which are yet to be

understood. Although we cannot presently elucidate

propagation mechanisms, extant findings do offer some

hints. First, the two cortical hemispheres are completely

synchronous, with no lag in activity [33,42]. Second, as

shown in figure 1c, unidirectional propagation within

RSNs takes nearly the same amount of time regardless of

whether the RSN is spatially contiguous (like the visual net-

work) or spatially distributed (like the DM network, which

has spatially separated posterior and anterior components).

One explanation for these observations is that neural

activity represented in the BOLD signal does not physically

propagate across the cortex, but is organized subcortically, a
heretofore unexplored possibility. Future experiments

which record cortical activity during subcortical manipula-

tions, for example, using DREADDs (designer receptors

exclusively activated by designer drugs) in a mouse

model [64], can directly test this hypothesis.

2. Physiological function: Neural communication in the brain

is generally associated with fast axonal signalling along

myelinated fibres, with temporal delays of the order of

tens of milliseconds [44]. Fast, high frequency signalling

underlies our ability to quickly perceive and react to

environmental stimuli [65]. However, the existence of pat-

terned slow, low-frequency propagation begs the question

of the physiological significance of these phenomena. A

theory proposed by Gyorgy Buzsaki, in the context of

cortico-hippocampal function, suggests that in order

to carry information, neural signals must be segmented

into ‘packets’ conveying discrete messages [66,67].

Thus, whereas information may be conveyed quickly

through high-frequency signals, slower propagation of

low-frequency activity may act to coordinate signaling

by creating a routing structure for higher frequency activity

which delineates distinct ‘packets’ of information.

For example, sharp wave ripples (SPW-Rs) rapidly

convey high frequency (greater than 100 Hz) signals from

the hippocampus to cortex [68], but the onset of SPW-Rs

is modulated by slower (1–4 Hz) signals propagating

from cortex to hippocampus [69,70]. Similarly, we speculate

directed propagation of spontaneous infra-slow activity as

reflected in the BOLD signal (e.g. back to front propagation

in the DMN), may coordinate higher frequency information

transfer in the opposite direction (e.g. front to back in the

DMN). Future studies which explicitly compare the direc-

tionality of infra-slow and higher frequency signals are

required to test how infra-slow propagation routes higher

frequency information flow.

3. Propagation sequences and neural processes: It has been

hypothesized that resting state BOLD activity may reflect

specific neural processes (or events) which occur on the

sub-second scale [3]. For example, Logothetis and col-

leagues demonstrated that hippocampal SPW-Rs have a

distinct rs-fMRI signature, including inter-regional tem-

poral delays of the order of those found in our resting

state studies [71,72]. Hence, we speculate that rs-fMRI

propagation sequences (e.g. lag threads) may correspond

to distinct neural processes. If this hypothesis was true,

we would expect state-dependent changes in rs-fMRI

propagation structure, as spontaneous neural events are

known to be altered across state. For instance, SPW-Rs,

slow waves, and many other neural processes are enriched

in (awake) post-task learning periods as well as sleep

[68,73,74]. In fact, we have indeed found that propagation

patterns in rs-fMRI are sensitive to physiological changes

in state, including before versus after motor learning tasks

[26], eyes open versus closed [26] and most dramatically,

wake versus slow wave sleep [45]. These findings suggest

that the propagation structure of rs-fMRI can be used to

reveal fundamental neural ‘events’ or processes in spon-

taneous activity; however, future multi-modal studies are

necessary to investigate whether events such as SPW-Rs

underlie distinct BOLD signal propagation patterns.

4. Relations to pathophysiology: Altered neural communication

is widely assumed to be a critical component of neurolo-

gical and psychiatric illnesses [75–77]. The propagation

http://www.nil.wustl.edu/labs/raichle/propagation_analysis.html
http://www.nil.wustl.edu/labs/raichle/propagation_analysis.html
http://www.nil.wustl.edu/labs/raichle/propagation_analysis.html
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structure of rs-fMRI presents a much expanded way to

study neural communication in human pathology. As a

proof of principle, we recently studied high-functioning

adults with autism spectrum disorder (ASD) and found

significant group differences in propagation structure

(ASD versus typical controls) [51]. Moreover, we found

specific relationships between propagation abnormalities

and behaviour. For example, altered cortico-striatal propa-

gation in the ASD cohort was highly correlated with

repetitive behaviours in individual subjects. By contrast,

we did not observe significant group differences in conven-

tional functional connectivity, in line with other recent

reports [78,79]. Therefore, propagation may be a more sen-

sitive marker of some pathologies than conventional

functional connectivity. These findings also raise the possi-

bility of therapeutic interventions. For instance, directed

stimulation of neural populations has shown therapeutic

promise in a host of diseases, but identifying proper stimu-

lation loci has remained a challenge [80]. In the future,

alterations in the propagation structure in rs-fMRI may

be used to identify specific neural circuits or regions for

targeted interventions and, also, a means of evaluating

the results of those interventions.
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Endnote
1A co-author of our earlier lag threads paper [42] suggested examin-
ing spatial correlations across lag thread topographies. He had
intended to suggest computing spatial correlations between RSNs
and lag threads, but A.M. mistook his meaning, and thus surprised
the group by finding that voxel-wise correlations across lag threads
mimicked RSN organization. We next struggled to interpret what
the meaning of this computation might be. We did not know how
to interpret high spatial correlations across temporal sequences.
After several weeks of false starts, A.M. happened to be walking
along a one-way street and wondered if the concept may explain
the result. Through simulation, we were able to demonstrate that
‘one-way streets’ do in fact provide a way to explain the emergence
of RSNs from lag threads.
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