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ABSTRACT 6 

Accumulating evidence indicates that resting-state functional magnetic resonance imaging 7 

(rsfMRI) signals correspond to propagating electrophysiological infra-slow activity (<0.1 Hz). 8 

Thus, pairwise correlations (zero-lag functional connectivity (FC)) and temporal delays among 9 

regional rsfMRI signals provide useful, complementary descriptions of spatiotemporal structure 10 

in infra-slow activity. However, the slow nature of fMRI signals implies that practical scan 11 

durations cannot provide sufficient independent temporal samples to stabilize either of these 12 

measures. Here, we examine factors affecting sampling variability in both time delay estimation 13 

(TDE) and FC. Although both TDE and FC accuracy are highly sensitive to data quantity, we 14 

use surrogate fMRI time series to study how the former is additionally related to the magnitude 15 

of a given pairwise correlation and, to a lesser extent, the temporal sampling rate. These 16 

contingencies are further explored in real data comprising 30-minute rsfMRI scans, where 17 

sampling error (i.e., limited accuracy owing to insufficient data quantity) emerges as a significant 18 

but underappreciated challenge to FC and, even more so, to TDE. Exclusion of high-motion 19 

epochs exacerbates sampling error; thus, both sides of the bias-variance (or data quality-20 

quantity) tradeoff associated with data exclusion should be considered when analyzing rsfMRI 21 

data. Finally, we present strategies for TDE in motion-corrupted data, for characterizing 22 

sampling error in TDE and FC, and for mitigating the influence of sampling error on lag-based 23 

analyses. 24 

Keywords: time delay estimation, functional connectivity, lag, sampling error, head motion, 25 

reliability  26 
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1. INTRODUCTION 27 

Since the seminal observations of Biswal and colleagues (Biswal et al., 1995), interest in 28 

resting-state functional magnetic resonance imaging (rsfMRI) for the study of spontaneous brain 29 

activity has increased exponentially (Snyder and Raichle, 2012). Studying the zero-lag temporal 30 

correlation structure of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) 31 

signal (i.e., “functional connectivity (FC)” analysis) provides an efficient means for mapping the 32 

large-scale spatial organization of brain function (Fox et al., 2005; Damoiseaux et al., 2006; Fox 33 

and Raichle, 2007; Power et al., 2011; Yeo et al., 2011). Although FC is the standard mode of 34 

rsfMRI analysis, spontaneous BOLD fluctuations additionally exhibit spatiotemporal dynamics 35 

not captured by zero-lag FC (i.e., processes whose measurement is contingent upon the 36 

temporal ordering of BOLD time points) (Liégeois et al., 2017). In particular, rsfMRI signals 37 

reflect infra-slow (<0.1 Hz) electrophysiological activity (Hiltunen et al., 2014; Palva and Palva, 38 

2012; Pan et al., 2013), which exhibits stereotyped propagation patterns across the brain; this 39 

widespread propagation leads to reliable interregional time delays on the order of one second 40 

between BOLD signals (MatsuiMurakami and Ohki, 2016; Mitra et al., 2018). The resultant 41 

temporal latency structure comprises multiple reproducible propagation sequences (Mitra et al., 42 

2015a), is dramatically rearranged across arousal states (Mitra et al., 2015b; Mitra et al., 2016; 43 

Mitra et al., 2018), and is sensitive to behavior (Mitra et al., 2014) and pathology (Mitra et al., 44 

2017) even in the absence of significant changes in FC. Thus, time delay estimation (TDE) 45 

provides a useful complement to zero-lag FC for characterizing spatiotemporal structure in 46 

rsfMRI. 47 

Importantly, the predominance of very low frequencies (<0.1 Hz) in infra-slow activity 48 

and BOLD signals means that practical scan durations do not provide sufficient independent 49 

temporal samples to stabilize second-order statistical measures (Laumann et al., 2015). These 50 

include cross-correlation among pairs of regional BOLD signals, from which both FC and time 51 
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delays can be derived (Fig. 1). There is growing appreciation for the consequences of such 52 

sampling variability on FC (Hlinka and Hadrava, 2015; Laumann et al., 2015; Laumann et al., 53 

2016; Hindriks et al., 2016), although the effects of rsfMRI artifacts such as those arising from 54 

head motion have received more attention. Crucially, procedures such as temporal censoring 55 

(i.e., the exclusion of high-motion time points) are effective for mitigating artifact (Power et al., 56 

2012) but at the cost of increased sampling error. Thus, it is important to consider both sides of 57 

the tradeoff between data quality and quantity, or between bias associated with specific artifacts 58 

and variance arising from reduced data quantity. Although the “correct” balance depends on the 59 

question of interest, in general, the latter becomes increasingly problematic the less stable a 60 

statistical measure is. Hence, sampling variability is a significant concern for correlations, and 61 

even more so for lag-based measures (Smith et al., 2011). Further, temporal censoring 62 

complicates TDE, which generally requires contiguous data. 63 

The primary goals of this work are to examine factors impacting TDE (and FC) sampling 64 

variability in fMRI, to address the integration of motion censoring with TDE, and to examine 65 

bias-variance tradeoffs in both TDE and FC. We begin with analyses of surrogate fMRI time 66 

series pairs with modeled time delays; these allow us to quantify, as a function of multiple 67 

factors, TDE and FC error with respect to “true” delays and correlations, respectively. Next, we 68 

use insights from these simulations to demonstrate how the effects of sampling variability in 69 

both TDE and FC can be easily observed in real data. Finally, we conclude with strategies to 70 

reduce the influence of sampling error on inferences drawn from TDE. Importantly, although 71 

interregional TDE is perhaps the most straightforward approach for quantifying BOLD 72 

propagation (Fig. 1), results are pertinent to the variety of approaches that have been used to 73 

detect or exploit temporal offsets among fMRI signals (Goebel et al., 2003; SunMiller and 74 

D'Esposito, 2005; GargCecchi and Rao, 2011; Majeed et al., 2011; Friston et al., 2014; Mitra et 75 
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al., 2014; Amemiya et al., 2016; Gilson et al., 2016; Raatikainen et al., 2017) (see Friston et al. 76 

(FristonMoran and Seth, 2013; Friston et al., 2014) for taxonomy of these approaches). 77 

2. TIME DELAY ESTIMATION 78 

2.1. Theory 79 

The Pearson correlation coefficient, �, for zero-lag correlation (i.e., FC) between 80 

continuous signals, ����� and �����, is given by: 81 

��	�
 = 1�	�

1� � ����� ∙ ������� , �1� 82 

where σ�	and σ�
are the temporal standard deviations of the zero-mean signals �� and �� and 83 

� is the interval of integration. By generalizing this equation to accommodate temporal delays, �, 84 

between the signals, correlation (or covariance, for simplicity, where ��	�
 is not normalized by 85 

the signal standard deviations) can be computed as a function of delay in seconds. Thus, 86 

��	�
��� = 1� � ���� + �� ∙ ������� �2� 87 

defines the cross-covariance function (CCF). The lag between ��and ��, ��,�, is then determined 88 

to be the value of � at which ��	�
��� exhibits an extremum. Thus, 89 

��,� = arg max� � ��	�
��� ! . �4� 90 

While the CCF of periodic time series is likely to feature multiple extrema, BOLD signals are 91 

aperiodic (He et al., 2010; ZarahnAguirre and D'Esposito, 1997) and almost always produces a 92 

single, well-defined cross-covariance extremum for a given pair of time series, typically in the 93 

range of ±1 s. 94 

2.2. Implementation 95 
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In practice, we first construct the CCF in the time domain at discrete multiples of the TR 96 

(i.e., at the sampling interval). A single CCF for each session is obtained by summing 97 

unnormalized cross-covariance over blocks ($) of contiguous frames, and subsequently 98 

normalizing based on the entire time series. (Variations of this approach are discussed in the 99 

next section). Thus, 100 

��	%�
% �∆� = ' ��%�� + ∆� ∙ ��%���(%
)*� , �5� 101 

��	�
�∆� =  1,∆*- ' ��	%�
%
.
/*� , �6� 102 

where ∆ is the temporal shift in units of TRs, � indexes frames, ,/ is the total number of frames 103 

within the block, ,∆*- is the total number of frames contributing to the zero-lag CCF estimate, 104 

and 1 is the total number of blocks. Because BOLD signals are best understood as stationary 105 

random processes (Liégeois et al., 2017), we set time series to zero-mean prior to Equation (5) 106 

by subtracting the mean computed over the maximum number of realizations (i.e., all non-107 

censored frames from the time series), rather than de-meaning each block separately, which 108 

would also increase the bias associated with CCF estimation (Marriott and Pope, 1954; Kendall, 109 

1954). 110 

 We subsequently use three-point parabolic interpolation among the empirical peak of 111 

��	�
 (�2345) and the values immediately preceding (�23456�) and succeeding (�23457�� it in order 112 

to approximate the extremum and its associated abscissa, �̂�,�, at a temporal resolution finer 113 

than the sampling rate (Fig. 1A-B) (Mitra et al., 2014): 114 

�̂ = TR �23456� −  �23457�2��23456� − 2�2345 +  �23457�! . �7� 115 

We currently discount delays longer than four seconds (�̂=4�= 4 s) as, in our experience, 116 

such results appear to reflect sampling error or artifact. Because a given time delay will typically 117 
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result in a peak in the empirical CCF at the nearest multiple of the TR, a true time delay at the 118 

maximum allowable (� = �̂=4�) can be resolved by allowing at least that number of time shifts, 119 

plus an additional time shift for parabolic interpolation (∆=4� = round��̂=4�/TR� + 1), where 120 

round�� evaluates to the nearest integer. In the present case (TR = 2.2 s), three time shifts 121 

(∆=4� = 3) were needed in each direction to estimate � = �̂=4�. Hence, ��	�
�∆� was computed 122 

over ∆ ∈ [-3, 3]. 123 

The above approach can be generalized to a set of D time series E�����, �����, … , �G���H. 124 

Thus, I�J�K�∆� will be an D L D L ∆ cross-covariance matrix from which �̂�J�K can be obtained for 125 

every pair of time series, �M�N  �O, P ∈ 1, 2, … , D�, yielding an D L D time delay matrix: 126 

�Q =  
RS
SS
T
 

�̂�,� ⋯ �̂�,G
⋮ ⋱ ⋮

−�̂G,� ⋯ �̂G,G
 
XY
YY
Z
 . �8� 127 

The diagonal entries of �Q are 0 by definition, given that a time series is perfectly correlated 128 

with itself at zero-lag. Moreover, �Q is anti-symmetric (�̂M,N = −�̂N,M�: if the time series �M is 129 

determined to precede �N by a certain magnitude, then �N can equivalently be said to succeed �M 130 

by the same magnitude, yielding the opposite sign. 131 

 Here we compute �̂M,N as the temporal delay of �N relative to �M, such that a negative 132 

value implies that �N  precedes �M. Thus, in accord with Nikolic et al. (SchneiderHavenith and 133 

Nikolić, 2006; Nikolić, 2007), a column-wise mean will yield a one-dimensional projection of �Q, 134 

which we refer to as a “lag projection” (�Q\�, reflecting the mean latency of each region of 135 

interest (ROI), D, with respect to all other ROIs. Hence, 136 

�Q\ =  1D ]' �̂�,N … ' �̂G,N
G
N*�

G
N*� ^ . �9� 137 
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Further, for a given “seed” region comprising one or multiple ROIs, the entire rows of �Q 138 

corresponding to these ROIs can be averaged to give a seed-based lag map – a one-139 

dimensional map of each voxel’s temporal delay with respect to the seed. The majority of real 140 

data presented here utilize a widely used set of 264 ROIs (Power et al., 2011) for simplicity. 141 

Exceptions are Figures 1E, 5, and 10, which utilize 6 mm cubic gray matter voxels (Mitra et al., 142 

2014) to provide uniform spatial coverage. 143 

2.3. TDE and motion censoring 144 

 Unlike surrogate data, real fMRI data are contaminated by artifact generated by head 145 

motion, cardio-pulmonary pulsations and fluctuating arterial pCO2, which poses challenges to 146 

accurately estimating time delays of interest. Rather than individually examining each of these 147 

artifact sources, we reason that existing denoising strategies (PowerSchlaggar and Petersen, 148 

2015; Liu, 2016; Caballero-Gaudes and Reynolds, 2017; Satterthwaite et al., 2017) should 149 

improve TDE. However, one such technique, motion censoring (Power et al., 2012), is worth 150 

revisiting in detail in the context of TDE. 151 

Removal of high-motion time points (censoring or scrubbing) from rsfMRI data reduces 152 

motion artifact (Power et al., 2012) but integration of censoring into TDE is not straightforward. 153 

Zero-lag correlation is invariant to re-ordering of data points within a time series, provided that 154 

the new ordering is common to both time series (Liégeois et al., 2017). This means that, within 155 

each time series, time points on either side of flagged high-motion frames can be directly 156 

concatenated. However, when computing pairwise correlation or covariance as a function of 157 

time delay (i.e., �M,N�∆� where ∆ ≠ 0), the flagged frames of the shifted time series will be 158 

misaligned with those of the first time series (Fig. 2a). In this case, concatenation would lead to 159 

erroneous results (Scargle, 1989). Instead, at each time shift, ∆, a proper “temporal mask” of 160 

flagged frames will be the intersection of the temporal mask at zero-lag and the shifted temporal 161 

mask. This implies that, for each time shift, the number of frames excluded from the covariance 162 
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computation exceeds the number of high-motion frames. Theoretically, this temporal masking 163 

strategy can lead to data loss by as much as a factor of two; however, in practice, the loss is 164 

less because high-motion frames tend to cluster together (PowerSchlaggar and Petersen, 165 

2015). 166 

 There are several ways to incorporate censoring into TDE (Fig. 2). One straightforward 167 

approach is simply to include, for each lag, all valid pairs of temporal samples as defined by the 168 

intersection temporal mask. Although this strategy makes use of all non-flagged frames, it can 169 

produce large differences in the number of frames contributing to each ∆ of the CCF (Fig. 2a, 170 

black). Consequently, the variance of each CCF point can differ substantially. Another concern 171 

is that motion artifacts may have temporally extended effects. Thus, while a pair of frames 172 

separated by a single high-motion time point may be valid, including them may corrupt the CCF 173 

at that ∆. 174 

An alternative strategy is to compute CCFs only over blocks of contiguous data (Fig. 2A, 175 

dark and light green), which avoids both above discussed limitations. We refer to this strategy 176 

as the "block approach." Summing (unnormalized) cross-covariance estimates across such 177 

blocks yields a single CCF for the time series (Eq. (6)). In prior analyses, we have used a 178 

conservative version of this approach, retaining only blocks of low-motion data at least 60 179 

seconds in duration (Mitra et al., 2014). Head movements often are followed by prolonged 180 

signal changes (Power et al., 2018). However, global signal regression (GSR) effectively limits 181 

motion artifacts to the epoch of movement (Power et al., 2014; Byrge and Kennedy, 2018; 182 

Power et al., 2018), which suggests that a 60-second minimum may be overly conservative 183 

when using GSR. Therefore, it is worthwhile to determine the degree to which including shorter 184 

blocks can reduce sampling error. To limit the degree to which different points of the CCF have 185 

unequal numbers of samples, a reasonable lower limit for block duration would be one that 186 
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allows for at least one sample per block to contribute to every point of the CCF (i.e., �∆=4� +187 

1� L TR) (Fig. 2A, light green). 188 

 Given contiguous data, computing lagged CCFs raises the choice of normalizing the 189 

estimate at all lags by a constant (number samples at zero lag, as in Eq. 6) vs. normalizing by 190 

the number of samples at each lag. The first option leads to biased but lower variance estimates 191 

(Jenkins and Watts, 1968). Given non-contiguous data, as in the present case, the situation is 192 

more complicated as the number of samples at each lag may vary widely. Figure 2B illustrates 193 

this issue using surrogate data combined with the real temporal mask obtained from moderately 194 

censored data. This toy case demonstrates that normalization strategy can lead to markedly 195 

different TD estimates. 196 

Finally, if the block approach (see above) is used, a single high-motion time point will 197 

result in the loss of several surrounding frames. Because BOLD fluctuations are very slow (<0.1 198 

Hz), it is possible that a reasonably accurate value for a contaminated frame may be estimated 199 

from its surrounding frames. Thus, interpolation is another viable strategy for reducing 200 

excessive data loss, and hence, sampling error. Alternatively, this strategy assumes that 201 

surrounding frames are free of artifact, which is not necessarily true. As with small blocks, 202 

determining the utility of interpolation requires quantitative comparisons using real data. 203 

3. METHODS 204 

3.1. Subjects 205 

We used the recently published Midnight Scan Club (MSC) dataset comprising ten 30-206 

minute eyes-open rsfMRI sessions from each of ten individuals (Gordon et al., 2017). 207 

3.2. MRI acquisition 208 

Details for acquisition of the MSC dataset have been described previously (Gordon et 209 

al., 2017). All imaging was performed on a Siemens TRIO 3T MRI scanner. For each subject, 210 
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anatomical scans included four T1-weighted sagittal magnetization-prepared rapid gradient-211 

echo (MP-RAGE) images as well as four T2-weighted sagittal images. Functional, T2*-weighted 212 

imaging (gradient-echo, 36 slices, TR = 2.2 s, TE = 27 ms, flip angle = 90°, voxel size = 4 mm 213 

isotropic) included 30 contiguous minutes of resting-state fMRI, collected during each of ten 214 

sessions performed at midnight, giving each subject five hours of resting-state data. During 215 

resting-state data acquisition, subjects fixated a white crosshair against a black background. An 216 

EyeLink 1000 eye-tracking system (http://www.sr-research.com) indicated that one subject 217 

(MSC08) exhibited prolonged eye closures, likely indicating sleep (Gordon et al., 2017). 218 

3.3. fMRI preprocessing 219 

For each subject a mean of field maps collected over multiple sessions was applied to 220 

images from all sessions for distortion correction, as described in detail elsewhere (Laumann et 221 

al., 2015; Laumann et al., 2016). 222 

 Functional data were next preprocessed to reduce artifact, maximize cross-session 223 

registration, and transform to an atlas space. All sessions underwent correction for odd-even 224 

slice intensity differences stemming from interleaved acquisition of slices within a volume, 225 

correction for within-volume slice-dependent time shifts, intensity normalization to a whole brain 226 

mode value of 1000, and within- and between-run rigid body correction for head movement. 227 

Transformation to Talairach atlas space (Talairach and Tournoux, 1988) was computed by 228 

registering the mean intensity image from a single BOLD session via the average T1-weighted 229 

image and average T2-weighted image, and subsequent BOLD sessions were linearly aligned 230 

to this first session. This atlas transformation was combined with mean field distortion correction 231 

and resampling to 3 mm isotropic atlas space in a single step. 232 

 Subsequent processing was performed on the atlas-transformed, volumetric time series 233 

to further reduce artifact. First, temporal masks were created to flag motion-contaminated 234 
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frames. Such frames were identified by outlying values of framewise displacement (FD), a 235 

scalar index of instantaneous head motion, computed as the sum of the magnitudes of the 236 

differentiated translational (three) and rotational (three) motion parameters (Power et al., 2012). 237 

Several subjects exhibited high-frequency peaks in the power spectrum of the y motion 238 

parameter, which captured the phase-encoding direction (anterior-to-posterior) (Gordon et al., 239 

2017); because this did not have an obvious influence on the data, nor an obvious relationship 240 

to typical head movements, and occurred above frequencies of interest (>.1 Hz), we low-pass 241 

filtered the y-motion time course at 0.1 Hz in all subjects prior to computing FD to prevent 242 

inflation of FD values and superfluous data loss (Siegel et al., 2017). Frames with FD exceeding 243 

0.2 mm (Power et al., 2014) were replaced via linear interpolation to yield continuous time 244 

series that could be filtered while mitigating the spread of motion artifact to surrounding frames 245 

(Carp, 2013). Interpolated BOLD time series, as well as motion parameters (HallquistHwang 246 

and Luna, 2013), were subsequently passed through a zero-phase second-order Butterworth 247 

band-pass filter (0.005 Hz < b < 0.1 Hz) to mitigate scanner drift and high-frequency artifact. 248 

Note that the extended duration of MSC scans gives the opportunity to capitalize on lower 249 

frequencies than typically analyzed with fMRI. 250 

3.4. Component-based nuisance regression 251 

 Next, the filtered BOLD time series underwent a component-based nuisance regression 252 

approach incorporating elements of previously published methods (Behzadi et al., 2007; 253 

PatriatMolloy and Birn, 2015). Substantial variance in cerebrospinal fluid (CSF) and white matter 254 

corresponds to physiological noise (e.g., CSF pulsations), arterial pCO2-dependent changes in 255 

T2*-weighted intensity (Power et al., 2018), and motion artifact. Because such spurious 256 

variance is widely shared with regions of interest in gray matter, time series extracted from 257 

these regions are often used for nuisance regression. While the mean signals from white matter 258 

and CSF are typically regressed from gray matter BOLD time series, regression of multiple 259 
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components comprising the nuisance signals has the potential to remove additional 260 

physiological variance (Behzadi et al., 2007) and motion artifact (Muschelli et al., 2014; 261 

PatriatMolloy and Birn, 2015) that has spatiotemporal structure differing from the mean signal. 262 

 Generation of component-based nuisance regressors proceeded as follows. Masks of 263 

white matter and ventricles were segmented using FreeSurfer (Fischl, 2012; DaleFischl and 264 

Sereno, 1999) and spatially resampled in register with the fMRI data. Voxels surrounding the 265 

edge of the brain are particularly susceptible to motion artifacts (Satterthwaite et al., 2013; Yan 266 

et al., 2013a); hence, a third nuisance mask was created for extra-axial (or “edge” (PatriatMolloy 267 

and Birn, 2015)) voxels by thresholding a temporal standard deviation image (tSD > 2.5%) 268 

(Behzadi et al., 2007) that excluded the eyes and a dilated whole brain mask. Voxel-wise 269 

nuisance time series were dimensionally reduced as in CompCor (Behzadi et al., 2007), except 270 

that the number of retained regressors, rather than being a fixed quantity, was determined 271 

independently for each of the three nuisance masks by orthogonalization of the covariance 272 

matrix and retaining components ordered by decreasing eigenvalue up to a condition number of 273 

30 (i.e., c=MG must satisfy c=4� c=MG⁄ > 30). The retained components across all compartments 274 

formed the columns of a design matrix, g, along with six motion parameter time series.  275 

 The columns of g are likely to be substantially collinear. To prevent numerical instability 276 

owing to rank-deficiency during nuisance regression, a second-level singular value 277 

decomposition was applied to ggh to impose an upper limit of 250 on the condition number. 278 

This strategy yielded on average 29.6 ± 8.5 (mean ± standard deviation) regressors per 30 279 

minute session (range = 16-55 regressors), to which the mean signal averaged over the whole 280 

brain (global signal), along with its first derivative, were added. Although global signal variance 281 

is in part neural in origin (Schölvinck et al., 2010; Wong et al., 2013; Liu et al., 2018; Turchi et 282 

al., 2018), global signal regression is a highly effective strategy to reduce spatially distributed 283 

artifact from myriad sources (Satterthwaite et al., 2013; Power et al., 2014; Ciric et al., 2017; 284 
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Power et al., 2017; Power et al., 2018) as well as the temporally extended effects of such 285 

artifacts (Byrge and Kennedy, 2018; Satterthwaite et al., 2013; Power et al., 2014; Power et al., 286 

2017), which could lead to spurious time delays. 287 

 The final set of regressors was applied in a single step to the filtered, interpolated BOLD 288 

time series. Finally, the interpolated time points were re-censored using a temporal mask. Time 289 

series were averaged within ROIs, which were either 264 10 mm diameter spheres (Power et 290 

al., 2011) for TD and FC distributions or 6 mm gray matter cubes (Mitra et al., 2014) for time 291 

delay matrices and lag projections maps (Fig. 1, 5 & 10). 292 

3.5. Surrogate fMRI time series 293 

 Determination of TDE accuracy requires knowledge of the true delay between a pair of 294 

time series, which is not known in real fMRI data. Therefore, we simulated pairs of fMRI time 295 

series with modeled time delays. Characteristics of fMRI signals, such as their 1/b-like behavior 296 

(ZarahnAguirre and D'Esposito, 1997; He et al., 2010), very low frequencies of interest (< 0.1 297 

Hz), and comparatively small time delays (±1 s), make TDE in fMRI a unique challenge. The 298 

creation of time series with these features proceeded as follows: First, two 1/bi Gaussian noise 299 

time series of the desired length and temporal sampling rate were generated using a previously 300 

published algorithm for the frequency domain generation of power law noise signals (Kasdin, 301 

1995; Kasdin and Walter, 1992), as implemented in MATLAB (StoyanovGunzburger and 302 

Burkardt, 2011). We used j = 0.7 for all simulations, which is a typical value for this parameter 303 

in fMRI data despite small variations across the brain (He et al., 2010; He, 2011). Next, these 304 

time series were put through the same bandpass filter as the BOLD data (i.e., 0.005 < b < 0.1, 305 

2nd order Butterworth). To precisely specify the desired correlation, these time series were 306 

standardized (made zero-mean, unit-variance), orthogonalized by projection onto the 307 

eigenvectors of the desired 2 L 2 correlation matrix k, standardized once more, and finally 308 

multiplied by an upper-triangular matrix l satisfying k = lhl (obtained by the Cholesky 309 
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factorization of k). This resulted in two zero-mean time series of unit variance that duplicated 310 

the spectral content of BOLD time series and had the specified correlation at zero-lag. Finally, 311 

one of the time series, ��, was shifted in the frequency domain representation to precisely 312 

model the desired time delay, �. Thus, 313 

��,∆ * � =  m6��m���,∆ * -! ∙ n6M�op�! �10� 314 

where m��� and m6���� are the Fourier and inverse Fourier transforms of �, ∆ is the time shift, b 315 

is the equal-length sequence of frequency-domain samples, and multiplication is performed 316 

elementwise. TDE was performed between the resulting time domain signal, ��,∆ * �, and its 317 

unshifted signal pair, ��,∆ * -. 318 

 Except where noted, simulated time series were constructed with the following 319 

parameters: � = 0.9 (before time shifting), � = 0.5 s, duration = 60 min. An unrealistically high � 320 

was used to visually enhance relationships between TDE error and other factors. Each data 321 

point in Figures 3, S1, and S2 represents 2,000 simulations.  322 

 TDE accuracy was evaluated in terms of bias, variance, and root-mean-square error 323 

(RMSE). Over D = 2,000 simulations, these were computed as follows: 324 

1Oqr��̂� =  1D ' �̂M
G
M*� −  � �11� 325 

sq�OqD�n��̂� =  1D ' ��̂M −  �̅��G
M*� �12� 326 

kuvw��̂� =  x1D ' ��̂M −  ���G
M*� = y1Oqr���̂� + sq�OqD�n��̂� , �13� 327 

where �, �̂M and �̅ signify the true time delay, the time delay measured on a given simulation O, 328 

and the mean time delay over D observations, respectively. 329 
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 We additionally used zero-lag surrogate time series to evaluate FC accuracy. For these 330 

simulations, the “true” correlation � was set in the above manner but for extended duration time 331 

series (5,000 minutes). This allowed us to estimate the accuracy of �̂ computed over a range of 332 

smaller data durations and a range of true correlation (�) values. Accuracy was evaluated in 333 

terms of RMSE: 334 

kuvw��̂� =  x1D ' �z��̂M� −  z�����G
M*�  , �14� 335 

where z�� signifies Fisher z-transformation (Fisher, 1915; Fisher, 1921). 336 

 Finally, surrogate data were used to isolate the effects of censoring-induced sampling 337 

variability (i.e., variable data quantity) from variable data quality and true intra- and inter-subject 338 

variability (Figure 8C-D only). For this analysis, surrogate time series were generated as above 339 

but were projected onto the eigenvectors of the real, group average 264 × 264 correlation 340 

matrix. 341 

 MATLAB code for comparing TDE strategies in surrogate time series and computing TD 342 

matrices and weighted lag projections as in this paper has been made publicly available at [link 343 

will be provided upon acceptance]. 344 

3.6. Outcome metrics and statistical analysis 345 

 TDE strategies (discussed in Section 2) may have opposing impacts on bias and 346 

variance, making it difficult to determine whether one strategy is superior to another. However, 347 

because the effects on bias and variance disproportionately impact high-motion data, our 348 

primary outcome measures were 1) correspondence between low- and high-motion sessions 349 

within each subject, and 2) correspondence between each session and the group average. 350 

Correspondence was computed over all unique ROI pairs for both TD and FC matrices (i.e., 351 

vectorized upper triangular of the 264 × 264 TD or FC matrix). TD pairs corresponding to |FC| < 352 
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.2 (as determined by the censored group average FC matrix) were excluded in these 353 

comparisons to focus reliability analyses on more robust relationships. Correspondence was 354 

determined by Spearman’s { for TD and Pearson’s � for FC distributions. 355 

Sampling error tends to result in larger magnitude correlations (PowerSchlaggar and 356 

Petersen, 2015), which increases the probability of the CCF (erroneously) exhibiting a maximum 357 

at some offset from zero-lag. Consequently, sampling error also tends to result in larger time 358 

delays. Therefore, we used the width of a given TD or FC distribution as a proxy for sampling 359 

error, which we computed as the standard deviation, σ, across the distribution. We also used 360 

QC:FC (Power et al., 2012) and QC:TD correlation distributions to visualize the impacts of head 361 

motion and sampling error on correlations and time delays, respectively. Each data point in 362 

these distributions reflects the correlation between mean FD (quality control metric) and a 363 

specific ROI:ROI pair FC (or TD) value, across all 100 MSC sessions. We use the FC or TD 364 

absolute value (|FC| and |TD|) in order to focus on the impact of sampling error on the 365 

magnitude of these statistics. While mean FD reflects the degree of head motion prior to 366 

censoring, it also provides an approximation for the relative amount of data loss following 367 

censoring (i.e., subjects with higher mean FD will generally lose more data due to censoring). 368 

Thus, because we are primarily interested in the effects of sampling variability due to data loss, 369 

we use mean FD computed prior to censoring throughout the paper. This is favorable to FD 370 

computed after censoring, which will be less correlated with data loss, and the actual quantity of 371 

data loss, which will differ depending on the strategy used for TDE. Nonetheless, FD computed 372 

before and after censoring correlated well (r = .71). Moreover, across different strategies, FD 373 

computed prior to censoring correlated well with the number of frames used for TDE (r > -.75 in 374 

all cases; r = -.92 with minimum allowable block duration). Further information related to motion 375 

and censoring can be found in Supplementary Tables 1-4. 376 
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Statistical significance of differences between TDE methods was assessed with 377 

Student’s paired t-tests performed on the Fisher-z transformed { or � values, or σ values 378 

corresponding to the TD or FC distributions. 379 

4. RESULTS 380 

4.1. Factors influencing TDE (and FC) accuracy: insights from surrogate time series 381 

 We used data simulations to explore the dependence of BOLD TDE accuracy on data 382 

quantity, correlation magnitude, and temporal sampling interval (Fig. 3). Figure 3A shows a 383 

roughly linear relationship between data quantity and RMSE extending over multiple decades 384 

on a log-log plot, underscoring the sensitivity of TDE accuracy to the quantity of data. Note that 385 

an unrealistically high correlation (� = 0.9) was used to make the pattern clear; as is evident in 386 

Figure 3B, TD RMSE exhibits a strong dependence on correlation magnitude. In particular, as 387 

correlation magnitude falls below ~0.2, RMSE markedly increases. An algebraic model of this 388 

effect is given below in section 4.4. Thus, in real (GSR) data, where the mean pairwise 389 

correlation magnitude may be as low as ~0.1 (as in the present study), the pattern in Figure 3A 390 

would be substantially shifted rightward (see Fig. S1 for RMSE plots at weaker correlation 391 

magnitudes). Note that Figure 3B explores TD RMSE as function of correlation magnitude in 60-392 

minute time series; see Figure S1 for this dependence in typical session- (10 minutes) and 393 

group-level (250 minutes) data quantities. 394 

In comparison to data quantity and correlation magnitude, the effect of TR is relatively 395 

minor but is most apparent given large quantities of data, where higher TRs (lower sampling 396 

rate) asymptote at greater RSME (Fig. 3A & S1). Thus, coarse sampling leads to poorer TDE 397 

resolution, even after parabolic interpolation. The improved detection of directionality in fMRI 398 

with increased sampling rate has previously been demonstrated in real data (Lin et al., 2014). 399 



19 

 

As pointed out in Equation (13), RMSE can be expressed in terms of bias, which refers 400 

to the difference between the expected value of an estimator and the true value of the 401 

parameter being estimated, and variance, which reflects the expected (squared) deviation of a 402 

single estimate from the mean estimate across a given number of observations. In Figures 3A 403 

and B, separate bias and variance plots are not shown because RMSE is largely determined by 404 

the latter (i.e., there is no systematic bias in TDE associated with specific data quantities or 405 

correlation magnitudes). However, it is useful to visualize all three properties when exploring 406 

dependence of TDE accuracy on the true time delay relative to the sampling interval, which is 407 

shown in Figure 3C for multiple TRs. The sinusoidal bias pattern (Fig. 3C, left) is a well-known 408 

characteristic of parabolic interpolation (Boucher and Hassab, 1981; Céspedes et al., 1995) and 409 

effectively biases estimates toward the nearest TR. This bias progressively worsens with 410 

increasing temporal distance from (roughly) the nearest half-multiple of the TR. Thus, for time 411 

delays in the range of 0 s up to 2 s for TR = 2 s, delays closer to 2 s are overestimated, and 412 

there is no bias at exactly 1 s. Bias is most severe when �/TR ≈ 0.3 and ≈ 0.7, as reported 413 

previously (Boucher and Hassab, 1981; Céspedes et al., 1995). This is yet another instance of a 414 

bias-variance tradeoff, as other TDE approaches (e.g., in the frequency domain) are free of this 415 

bias but exhibit greater variance. 416 

A complementary pattern is observed for variance, which peaks halfway between 417 

samples (Boucher and Hassab, 1981; Céspedes et al., 1995) (Fig. 3C, right). Combining these 418 

bias and variance effects yields an RMSE pattern that exhibits peaks around the quarter-interval 419 

marks and a local trough halfway between samples (Fig. 3C, lower). Note also that RMSE in 420 

seconds scales with TR without change in pattern (Céspedes et al., 1995). 421 

Like TDE, FC accuracy is highly dependent on data quantity and continues to decrease 422 

linearly on a log-log plot up to the maximum measured duration (1000 minutes). However, FC 423 

sampling variability is not obviously sensitive to the true correlation of a given time series pair, 424 
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nor the temporal sampling rate, making it a simple reflection of data quantity measured in units 425 

of time (Fig. S2). 426 

4.2. Manifestations of bias and variance in real data (prior to censoring) 427 

 We next sought to determine whether the above relationships are apparent in real data. 428 

Figure 4A displays histograms of all possible pairwise time delay estimates among 264 ROIs 429 

(Power et al., 2011) using our published approach for TDE (Mitra et al., 2014): data is from 430 

either one session (MSC01 session 1; red), one subject (MSC01, time delays averaged over all 431 

10 sessions; green), or all 10 subjects (MSC01-MSC10, time delays averaged across sessions 432 

within subject and subsequently across subjects; black). Decreasing variance associated with 433 

increasing data quantity is apparent in the widths of the distributions. 434 

Figure 4B displays histograms of all unique pairwise time delays from all 100 MSC 435 

sessions. The blue trace reflects only those time delays corresponding to ROI pairs with zero-436 

lag correlation magnitude ≥ 0.2, while pairs with correlation < 0.2 are represented by the pink 437 

trace. Several inferences can be made from these histograms. First, there are far more pairwise 438 

correlations below rather than above 0.2. Second, parabolic interpolation bias is much more 439 

apparent for weaker as opposed to stronger correlations. Structure in the pink trace (slope 440 

discontinuity at ±1.1 sec in data acquired at TR = 2.2 sec) reflects bias associated with 441 

parabolic interpolation (Moddemeijer, 1991) (Fig. 3C, left). The pattern is less obvious (but 442 

nonetheless present) for more strongly correlated pairs (blue) because they exhibit less 443 

sampling error, hence, relatively few delays far from zero. 444 

 We next consider how TD error can obscure spatiotemporal patterns of interest. Figure 445 

1D shows the MSC-average TD matrix, masked to include only cortical (6 mm)3 cubes with 446 

high-probability (≥ 90%) affiliation with one of seven functional networks (Hacker et al., 2013). 447 

The rows and columns of this matrix have been sorted from early-to-late by their mean values, 448 
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and by functional network, to demonstrate delays on the order of ~1 s in both on- and off-449 

diagonal blocks. Note that the well-ordered, early-to-late progression within each block, as well 450 

as the consistency with which certain voxels appear as early or late across rows/columns, is not 451 

imposed; rather, this latency structure suggests that infra-slow activity is well-organized both 452 

within and between networks. Importantly, this matrix represents 3000 minutes of data and 453 

recapitulates prior findings obtained from similarly large data quantities (Mitra et al., 2014). In 454 

contrast, Figure 5A shows a TD matrix from one MSC subject (MSC01, averaged across all 10 455 

sessions; 300 minutes) following the same sorting procedure as in Figure 1D, along with the 456 

zero-lag, absolute value FC matrix from the same subject. Structure in the off-diagonal blocks is 457 

less evident in Figure 5A in comparison to Figure 1D. In general, the degree to which a block in 458 

the TD matrix of Figure 5A is structured appears to correspond to the strength of absolute value 459 

FC within the block. 460 

To quantify the relationship between TD matrix structure and correlation magnitude, we 461 

first created a measure that approximately reflects temporal structure. Specifically, because 462 

well-structured blocks of the sorted TD matrix appear to comprise roughly iso-latent diagonals, 463 

we defined “error” in the latency structure of each block as the RMSE of all time delays in the 464 

block relative to the mean delay of their respective diagonals (Fig. 5B). Next, we averaged |FC| 465 

within each of the blocks (Fig. 5C). These procedures resulted in block-wise values of both error 466 

and mean |FC| (Fig. 5D), which we correlated with each other using session-, subject-, and 467 

group-level matrices. As expected, error in latency structure decreased with increasing data. 468 

Moreover, there was a strong inverse correlation between error and mean |FC| at the session (r 469 

= -.87, p < .0001) and subject (r = -.81, p < .0001) levels, but not at the group level (r = .26, p = 470 

.18) (N = 28 blocks for each correlation) (Fig. 5E). This pattern is understandable as a 471 

consequence of Figure 3A-B: while data quantity at the group-level was sufficient for a majority 472 

of ROI pairs (e.g., Fig. 1D), data quantity contributing to session- and subject-level TD matrices 473 
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was sufficient for only those ROI pairs with relatively strong FC. Once sampling error is largely 474 

mitigated, there is little dependence of latency structure on the underlying correlations. 475 

4.3. Sampling error incurred from motion censoring 476 

As TDE sampling error can be readily observed prior to censoring, removing time points 477 

necessarily increases this source of error, even while mitigating error stemming from artifact. 478 

Accordingly, we sought to determine how censoring contributes to sampling error. Because 479 

sampling error tends to increase the magnitude of correlations (Yan et al., 2013a; 480 

PowerSchlaggar and Petersen, 2015), and thus, cross-correlation derived time delays (e.g., Fig. 481 

4), we focused on TD and FC magnitudes and distribution widths in relation to head motion and 482 

data loss. 483 

Results pertaining to head motion artifact and data loss are shown in Figure 6. Prior to 484 

motion censoring, the standard deviation of a single session’s TD distribution was positively 485 

correlated with mean FD across all 100 MSC sessions (r = .32, p < .001) (Fig. 6A left). This 486 

result implies that head motion introduces spurious time delays that tend to be longer than those 487 

arising from neurophysiology (Byrge and Kennedy, 2018). After censoring FD > 0.2 mm frames 488 

(Power et al., 2014) and using our original strategy of discarding segments of data < 60 s in 489 

duration (Mitra et al., 2014), the mean distribution width (as measured by the standard 490 

deviation) across all sessions was greatly increased (σpre = 1.60 ± 0.07, σpost = 1.67 ± 0.15; ppost-491 

pre < .0001) and the correlation between TD distribution width and mean FD increased to .72 (p < 492 

.0001) (Fig. 6A right). Although the standard deviation of the FC distribution was inversely 493 

correlated with mean FD prior to censoring (r = -.44, p < .0001), perhaps owing largely to 494 

stronger negative correlations in low-motion sessions, FC σ, like TD σ, also became strongly 495 

correlated with mean FD after censoring (r = .43, p < .0001) (σpre = 0.18 ± 0.01, σpost = 0.20 ± 496 

0.03; ppost-pre < .0001) (Fig. 6B). 497 
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 Relating distribution widths to FD before versus after censoring, as above, permits 498 

quantification of the influence of head motion and data loss, respectively, on TD (and FC) at the 499 

session level. These relationships can be further examined at the level of individual ROI pairs. 500 

Accordingly, a histogram may be constructed in which each observation reflects one ROI pair, 501 

and its value corresponds to the correlation, across 100 sessions, between mean FD and the 502 

TD of that ROI pair. A similar histogram can be constructed for FC for all ROI pairs. Such 503 

“QC:FC” (quality control:functional connectivity) correlation distributions have previously been 504 

used to visualize the impact of head motion on FC, where head motion generally shifts the 505 

QC:FC distribution rightward (Power et al., 2014; Ciric et al., 2017). Here, we extend this 506 

strategy to studying how head motion (and data loss) impacts TD as well as FC. We computed 507 

QC:TD (QC:FC) by taking the absolute value of the TD (FC). pair to focus specifically on 508 

sampling error. A null model was generated by randomly permuting mean FD over sessions. 509 

Prior to censoring, the QC:|TD| distribution was shifted slightly rightward compared to the null 510 

model (Fig. 6C) while the QC:|FC| distribution was shifted leftward (Fig. 6D). Thus, as observed 511 

at the session level (Fig. 6A-B), head motion leads to inflated estimates of TD while tending to 512 

reduce FC magnitude. After censoring, both QC:|TD| and QC:|FC| distributions were shifted 513 

rightward, suggesting, once again, that increased data loss leads to inflated TD and FC 514 

estimates. Altogether, these findings point to a strong increase in sampling error associated with 515 

censoring under the 60-second block requirement. 516 

We next explored the ramifications of censoring-induced sampling error. Because high-517 

motion sessions are more severely impacted, we assessed correspondence between the five 518 

lowest- and highest-motion sessions within each of the 10 MSC subjects, as well as the 519 

correspondence of each session to the group average. Importantly, the latter metric is also 520 

sensitive to head motion and is significantly inversely correlated with mean FD across all 100 521 

sessions before motion censoring (r = -.39, p < 0.0001 for TD; r = -0.39, p < 0.0001 for FC). 522 
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Comparing TDE results with and without motion censoring, using an FD threshold of 0.2 mm 523 

with the 60 second block requirement, resulted in greater divergence between low- versus high-524 

motion sessions (N = 10 subjects, p < .05) and consistently decreased session-to-group 525 

correspondence (N = 100, p < .001) (Fig. 6D). This was true of FC as well (low:high-motion, p < 526 

0.1; session:group, p < 0.001) (Fig. 6E). Thus, an overly stringent approach to motion censoring 527 

(FD < 0.2mm and 60 sec blocks) yields poorer results for both TD and FC than simply retaining 528 

the high-motion time points. 529 

4.3. Comparing strategies for TDE among discontinuous time series 530 

The 60-second block duration was originally adopted to avoid TDE errors generated by 531 

temporally extended artifact associated with head motion. However, it has since been shown 532 

that GSR (which we use) effectively reduces such artifacts (Power et al., 2014; Byrge and 533 

Kennedy, 2018), Accordingly, we next determined how including relatively short epochs impacts 534 

our outcome metrics. Outcome was again assessed as the correlation between vectorized TD 535 

and FC matrices (correspondence). We found that low:high-motion correspondence as well as 536 

session:group correspondence monotonically increased as the imposed minimum block 537 

duration was reduced down to the limit consistent with at least one data point from each block 538 

contributing to each CCF lag ("minimum allowable" block duration) (Fig. 7A). Similar results 539 

were observed for FC (Fig. 7B). 540 

 Results so far have been reported for the unbiased CCF estimator, i.e., normalized by the 541 

number of sampled frames at each lag. Since the minimum allowable block approach ("min") 542 

proved optimal, we compared it against three alternatives: (i) biased CCF estimator (i.e., 543 

normalized by the number of sampled frames at zero-lag) with the minimum allowable block 544 

duration ("biased"), (ii) enforcing equal samples at each time point in an unbiased CCF 545 

estimator (as in Figure 2A, light green; “equal”), and (iii) unbiased estimator using all valid 546 

frames at a given time shift (as in Figure 2A, black; “all”). Of these 4 approaches, the unbiased 547 
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CCF estimator with minimum allowable block requirement performed best (Fig. S3). However, 548 

the differences between these approaches were minimal in comparison to relaxing the imposed 549 

minimum block duration requirement. 550 

We additionally investigated whether interpolating over censored frames could further 551 

improve the unbiased, minimum allowable block approach. Given the degree of sampling error 552 

present at the single-session level, even with 30-minute sessions, it might be expected that 553 

interpolation would improve outcome metrics by salvaging data, even if that data is of poor 554 

quality. Accordingly, the effects of linear interpolation were compared against an approach in 555 

which interpolated frames were replaced with the original (post-regression), potentially 556 

contaminated values. Although both of these approaches improved group correspondence for 557 

both TD and FC, interpolation did not outperform the alternative for FC and, for TDE, performed 558 

significantly worse (Fig. S4). 559 

Finally, because the minimum allowable block duration approach is far more lenient than 560 

the imposed 60-second minimum and is comparable with conventional FC data constraints 561 

(e.g., (Power et al., 2014)), we repeated the analyses in Figure 6A-D using the minimum 562 

allowable block duration approach. We found that both TD distribution widths and magnitudes 563 

remained positively correlated with mean FD, though these relationships were no longer 564 

apparent for FC (Fig. 8). In order to aid interpretation of this result, we repeated these analyses 565 

in surrogate time series; doing so enabled us to isolate potential consequences of censoring-566 

induced sampling error, when using the minimum allowable block duration, from effects related 567 

to data quality or biology. We generated a single set of 264 surrogate time series based on the 568 

real group average correlation matrix (and assumption of zero lag among all time series). Next, 569 

we censored these time series according to the real temporal censoring masks (FD > 0.2) from 570 

each of the 100 MSC sessions. Hence, any differences in correlation or lag structure computed 571 

from these time series would be attributable to censored-induced sampling error. 572 
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We found TD and FC relationships with FD to be outstanding in the surrogate data (Fig. 573 

9), demonstrating that censoring-induced sampling variability remains a significant source of 574 

error for both TD and FC when using the minimum allowable block duration approach, despite 575 

30-minute sessions. Taking these findings into account, it can be concluded from the real data 576 

(Fig. 8) that 1) sampling variability still has a considerable influence on observed time delays 577 

when using minimum allowable block duration, and 2) absence of a prominent FC:FD 578 

relationship when using the minimum block approach does not indicate the absence of sampling 579 

error, but rather that the influence of sampling error is less salient in comparison to other factors 580 

(e.g., data quality and inter-session or inter-subject variability). Thus, sampling error remains an 581 

issue for TD and FC when using 30-minute sessions. 582 

4.4. Weighting lag projections against sampling error 583 

We use “lag projections” to visualize each region’s mean temporal relationship with the 584 

rest of the brain (Fig. 1E). Lag projections are computed by averaging a region’s temporal lag 585 

with respect to all other regions (columns of TD matrices; Eq. 9). Given the dependence of TDE 586 

accuracy on correlation, we asked whether this relation could be used to obtain more reliable 587 

lag projections. Inspection of the relation between RMSE and |�| (e.g., Fig. 3B) suggested the 588 

following functional form: 589 

b��� = ~ tan ��2 �1 − |�|�� , �15� 590 

which accurately describes TD RMSE in surrogate time series with ~ fit by conventional 591 

regression (Fig. 10A). This expression explains >.99 of the variance in data quantities that are 592 

typical in group-level analyses. 593 
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Equation (15) can be used to reduce the sampling error of lag projections by down-594 

weighting high-variance lag estimates. Thus, weighted lag projections, (��Q\) are computed by 595 

inversely weighting TD pairs in proportion to modeled squared error. Thus, 596 

��Q\ =  ] 1∑ �N^ ∙ ]' ��,N ∙ �̂�,N … ' �G,N ∙ �̂G,N
G
N*�

G
N*� ^ , where  �M,N = 1b���̂M,N! . �16� 597 

In Equation (16), the correlation used to compute �M,N is the conventional zero-lag FC metric 598 

(�̂M,N). In principle, the peak correlation at �̂�,N could have been used instead. However, this 599 

measure is more susceptible to spurious inflation (BrightTench and Murphy, 2017). Given the 600 

predominance of frequencies below 0.1 Hz in BOLD signals, zero-lag correlation differs only 601 

slightly from peak correlations obtained within the range of lags studied here. 602 

The effect of weighting in real data is examined in Figure 10B-D. Panel B shown voxel-603 

wise lag projections at the session-, subject- and group-levels. Weighting generally increases 604 

the magnitude of projection values. This effect is quantitatively demonstrated in panel C as an 605 

increase in session-level lag projection distribution widths. Weighting disproportionately impacts 606 

sessions with less data (i.e., those with the higher mean FD), which manifests as greater 607 

correlation between lag projection σ and FD (unweighted r = .75, weighted r = .37). Despite this 608 

effect, weighting drastically improved individual correspondence with the group average 609 

unweighted lag projection (panel D). Thus, weighting effectively reduces the impact of sampling 610 

error on the spatiotemporal patterns reflected in lag projections. 611 

5. DISCUSSION 612 

Here we have investigated factors contributing to sampling variability in fMRI time delay 613 

estimation (TDE). The overarching result is that sampling error is a critical issue in both TDE 614 

and zero-lag functional connectivity (FC) analyses. Below we discuss the implications of these 615 

findings for rsfMRI research. 616 
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5.1. Motion censoring and TDE 617 

We compared multiple strategies for TDE in the presence of discontinuities introduced 618 

from motion censoring (Fig. 2). Several of these strategies involve tradeoffs between bias and 619 

variance that more strongly impact high-motion sessions, i.e., sessions with less useable data. 620 

Therefore, to examine bias-variance tradeoffs, we used correspondence between low- and high-621 

motion sessions as well as session-level correspondence with the motion-censored group data 622 

as outcome measures. 623 

We found that including small blocks of contiguous data greatly reduces sampling error, 624 

down to the minimum allowable duration at which each block still contributes at least one 625 

temporal sample to all CCF lags (Fig. 7). Hence, in order to minimize data loss, the smallest 626 

possible number of time shifts should be used to estimate the CCF. Because the spectral 627 

content of BOLD signals is weighted towards very low frequencies, CCF peaks on the order ~10 628 

sec or more may be expected. However, we currently exclude delays longer than four seconds 629 

as, in our experience, such latencies seem to reflect sampling error or artifact. Thus, in the MSC 630 

data, we were able to compute each CCF over just seven time shifts (∆=4� = 3), making the 631 

minimum allowable block duration (∆=4� + 1) × TR = 8.8 s (see Section 2.2 and Fig. 2A). 632 

Including all valid frames at a given time shift makes maximal use of data, hence 633 

minimized sampling error. However, this approach did not improve outcome measures, possibly 634 

owing to artifact in extremely short segments of data (i.e., here, < 5 frames) that are surrounded 635 

by high-motion epochs, or spurious time delays associated with data samples on opposite sides 636 

of high-motion epochs. Because the “all” valid frames approach yields results comparable to the 637 

minimum allowable block approach ("min"), we favor the latter to avoid large disparities in the 638 

number of frames contributing to (and thus, the variance of) each lag of the CCF. Using a block 639 

approach, temporal interpolation also salvages substantial data, that is, frames surrounding the 640 

censored artifact. However, interpolation failed to improve outcome metrics beyond simply 641 
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including the original high-motion time points. Therefore, replacing potentially contaminated 642 

frames with interpolated data is not advisable. However, we did not account for the level of head 643 

motion in the frames that were interpolated. It remains possible that interpolation is useful in 644 

specific situations, for example, when a long block of data is interrupted by a single large head 645 

movement. Nonetheless, because we find that the minimum imposed block duration can be 646 

brief, interpolation, even if effective, has only limited potential to salvage data. Finally, we found 647 

that, while the biased CCF is associated with reduced variance, in our case, the unbiased CCF 648 

estimator yielded more favorable outcome metrics, although these differences were small. 649 

Based on these findings, the unbiased, minimum allowable block approach with no interpolation 650 

was the most effective of the examined TDE strategies. 651 

We note that the purpose of these comparisons is primarily to outline the nuances of 652 

motion censoring in the context of TDE and to assess the involved bias-variance tradeoffs. In 653 

practice, the nature of the dataset (e.g., TR, degree and pattern of head motion, pre-processing 654 

strategies) will likely affect which approaches appear “optimal.” For example, interpolation may 655 

be more useful in datasets with shorter TR. Further, even micro-movements (i.e., FD below 0.2) 656 

can still have a detectable influence on rsfMRI data (Power et al., 2014), and are likely to be 657 

more prevalent in temporal proximity to larger movements. Therefore, in very large datasets in 658 

which sampling error has been minimized, more aggressive data exclusion (e.g., stricter criteria 659 

for censoring and/or minimum block duration) may prove beneficial. Our findings may provide a 660 

useful guideline but are not guaranteed to be optimal in all cases. To aid in the evaluation and 661 

application of TDE in diverse fMRI datasets, we have made publicly available MATLAB code for 662 

lag computation in real and surrogate data as described here ([link will be made available upon 663 

acceptance]).  664 

5.2. Using correlation to inform lag analysis 665 
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The accuracy of TDE between two signals is highly dependent on the strength of 666 

correlation between them (Walker and Trahey, 1995; CéspedesOphir and Alam, 1997) (Fig. 667 

3B). TD matrices comprise both intra- (on-diagonal) and inter-network (off-diagonal) 668 

relationships (e.g., Fig. 5), the latter of which correspond (by definition) to comparatively weak 669 

correlations prone to sampling error. Even so, large quantities of data reveal structure in off-670 

diagonal blocks (Fig. 1D), suggesting that the activity shared between networks, albeit 671 

comparatively minor, is well-organized and may be biologically important (Mitra and Raichle, 672 

2016; Mitra and Raichle, 2018). Indeed, inter-network lag relationships may reflect integrative 673 

aspects of spontaneous brain activity complementary to the segregated functional networks 674 

revealed by zero-lag FC. Unfortunately, inter-network lag relationships require large quantities 675 

of data to estimate accurately (Fig. 5). Nonetheless, informative lag analyses can be performed 676 

with data quantities that may not be sufficient to stabilize the full TD matrix. For example, time 677 

delays among highly correlated ROI pairs can be estimated to reasonable accuracy with far less 678 

data than that required to study brain-wide propagation. Correlations may also be used to 679 

threshold seed lag maps, providing a more reliable visualization of the seed’s temporal 680 

relationships with regions exhibiting closely shared activity. 681 

TD matrices exhibit significant transitivity (Mitra et al., 2014), as defined by the high 682 

proportion of all possible triples whose time delays sum to 0 (Nikolić, 2007), despite high 683 

dimensionality (Mitra et al., 2015a). Thus, one-dimensional lag projections provide a useful 684 

spatiotemporal representation of propagation structure. Moreover, unlike full TD matrices, stable 685 

lag projections can be computed with relatively limited quantities of data (Fig. 10D). Further, 686 

statistical testing performed between lag projections from different groups or conditions is a 687 

useful low-dimensional approach to identifying regions whose spatiotemporal relationships may 688 

be altered (Mitra et al., 2015b; Mitra et al., 2017). By using correlation magnitude to give weight 689 
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to stronger pairwise relationships, weighted lag projections offer increased reliability and may 690 

prove more sensitive to group differences in spatiotemporal patterns. 691 

We show above that sampling error increases the distribution widths of both measured 692 

TDs and correlations. Perhaps counterintuitively, weighting also increased the distribution width 693 

of lag projection values (Fig. 10C). Weighting likely increases sampling error by reducing the 694 

effective number of ROIs over which the mean temporal delay is computed, which leads to 695 

increased correlation between distribution width and data loss. However, this effect appears to 696 

be less important than down-weighting sampling error from weak correlations. Accordingly, the 697 

overall effect of weighting is improved reliability. We conclude that weighting usefully mitigates 698 

the adverse impact of sampling error on observed spatiotemporal topographies. 699 

Finally, in addition to their statistical relation, TD and FC are phenomenologically related. 700 

Therefore, statistical differences in TD cannot be properly interpreted without comparison of 701 

underlying correlation structure. Likewise, interpretation of a given TD is greatly informed by 702 

knowledge of FC. Statistical significance of TD may be established by comparison with TD 703 

computed from appropriate null data: surrogate time series matching the quantity, correlation 704 

magnitude(s), TR, and auto- and cross-spectral content of the real data, but with peak 705 

correlation at zero-lag (i.e., devoid of latencies). This can be achieved, for example, by 706 

destroying phase information from the original time series (Hindriks et al., 2018). Null data may 707 

also be used to construct confidence intervals for empirical TD. Nonetheless, the biological 708 

interpretation of a significant TD or significant between-group difference in TD may differ widely 709 

depending on the underlying FC, or the presence and/or nature of a change in FC. 710 

5.3. Motion censoring and sampling error in rsfMRI 711 

Limited data quantity is among the most significant challenges in rsfMRI research. The 712 

slow nature of fMRI signals (<0.1 Hz) necessitates large quantities of data to obtain sufficient 713 
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independent temporal samples. Even after reducing the minimum imposed block duration to that 714 

of conventional FC analysis (e.g., (Power et al., 2014)), across 100 scans, the width of both the 715 

TD (in real and simulated data) and zero-lag FC (in simulated data) distributions following 716 

censoring remained positively correlated with head motion (i.e., data loss) (Fig. 8-9). Yan et al. 717 

previously demonstrated an increase in observed FC magnitude with excessive censoring (Yan 718 

et al., 2013a); we show that this manifestation of FC sampling error is observable even in 719 

atypically long (30 minutes before censoring) rsfMRI time series. 720 

We additionally found that QC:|TD| (in real and simulated data) and QC:|FC| (primarily in 721 

simulated data) distributions were shifted rightward after censoring, again reflecting the 722 

tendency of sampling error to inflate TD and FC estimates (Fig. 6C-D, Fig. 8B & Fig. 9B). Why 723 

have these patterns not been apparent in prior studies? One reason is that the range of data 724 

quantities in the present study is larger than typical. Thus, if 10 minutes typically are acquired, 725 

and censoring removes as much as half, the range of retained data quantities in a given dataset 726 

remains relatively limited. This potential for censoring to introduce large discrepancies in 727 

retained data quantity among long scans was previously discussed by Satterthwaite et al. 728 

(Satterthwaite et al., 2013). Computing QC:|FC| rather than QC:FC, as in prior work, also is 729 

crucial. In our analysis, the QC:|FC| distribution was left-shifted (relative to the null) prior to 730 

censoring and right shifted after censoring (Fig. 6D). In contrast, the QC:FC distribution was 731 

zero-centered and minimally impacted by censoring (Fig. S5), which is typical of GSR data 732 

(Power et al., 2014; Ciric et al., 2017). 733 

How does unequal sampling error impact statistical comparisons across groups? 734 

Welch’s t-test and non-parametric tests for group differences in mean value take sampling 735 

variability into account. Thus, unequal sampling error is not a significant barrier in most group 736 

comparisons when group differences in mean value is at issue. The possibility of adjusting 737 

censoring (or discarding data) to ensure uniform number of frames in all subjects has been 738 
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discussed (Ciric et al., 2017; Power et al., 2014). However, we see no reason to deliberately 739 

introduce sampling error in this manner except when unequal variance biases outcomes, as in 740 

analyses based on machine learning (Power et al., 2014). Of greater consequence is that 741 

sampling error is not fully eliminated in 30-minute rsfMRI sessions, let alone conventional five-742 

minute sessions. This point is evident in recent reports on highly-sampled individuals, in which it 743 

is shown that single-subject FC matrix reliability plateaus only after more than an hour of data is 744 

analyzed (Laumann et al., 2015; Gordon et al., 2017). 745 

Corruption of FC by head motion artifact and denoising strategies (e.g., nuisance 746 

regression, filtering) for reducing this motion-related bias have been well-described 747 

(PowerSchlaggar and Petersen, 2015; Satterthwaite et al., 2017). However, these strategies 748 

currently fall short of completely removing motion artifact; hence, excluding high-motion time 749 

points further improves data quality (Power et al., 2012; Power et al., 2014; Satterthwaite et al., 750 

2013; Yan et al., 2013a; Yan et al., 2013b; Burgess et al., 2016; Ciric et al., 2017; Siegel et al., 751 

2017). But, motion censoring exacerbates sampling error (Ciric et al., 2017). Although in 752 

principle sampling error (variance) is preferable to a systematic bias, sampling error increases 753 

the likelihood of spurious findings, reduces statistical power for detecting true effects, and 754 

produces artificially inflated estimates of TD and FC under the limited data conditions typical of 755 

most fMRI studies. Thus, censoring necessarily involves a bias-variance tradeoff, both sides of 756 

which should be considered when determining censoring criteria and when interpreting reported 757 

outcomes. 758 

We used reliability to assess the tradeoff between bias reduction versus increased 759 

variance associated with censoring. Theoretically, reliability as an outcome measure can be 760 

confounded by reliable artifact. However, this is unlikely a significant concern in the present 761 

study for the following reasons: (1) We examined reliability following extensive nuisance 762 

regression. (2) Reliability was assessed as correspondence between low- and high-motion 763 
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sessions. (3) Reliability additionally was assessed as correspondence between individual 764 

sessions and the censored group average, and this measure inversely correlated with head 765 

motion. Thus, these measures were unlikely to have reflected reliability of artifact. 766 

That said, we observed only modest and mixed effects of censoring on TD and FC 767 

reliability, provided that the analyses used the minimum allowable block duration strategy 768 

(compare Fig. 7 with Fig. 6E-F). The small magnitude of these effects may be attributable to 769 

effective denoising, including component-based regression (Behzadi et al., 2007; PatriatMolloy 770 

and Birn, 2015) and GSR (Power et al., 2014), and to the present dataset being relatively low-771 

motion (Tables S1-4). The impact of censoring on reliability likely depends on both data quantity 772 

and quality, including the efficacy of pre-processing and the type and pattern of motion artifact 773 

(e.g., small vs. large, sparse vs. frequent; see Supplementary Tables 1-4 for session-specific 774 

information related to motion and censoring from the present dataset). More work is needed to 775 

better define these dependencies. 776 

More generally, while many of the analyses herein suggest that maneuvers increasing 777 

data quantity are preferable, this was not always the case. As described above, neither the “all” 778 

condition nor temporal interpolation improved outcome measures despite increased data 779 

quantity. It is likely that an increase in bias associated with these approaches counteracted any 780 

benefits of decreased variance. Moreover, the present results focus on single sessions (albeit 781 

30 minutes); in larger group analyses, researchers can afford to sacrifice more potentially-782 

biased data without substantially increased variance. Our analyses bring attention to the 783 

perhaps underappreciated influence of sampling error. In all cases, both artifact-related bias 784 

(Power et al., 2012; Satterthwaite et al., 2012; Van DijkSabuncu and Buckner, 2012; Siegel et 785 

al., 2017) and sampling variability warrant careful consideration in fMRI analyses. 786 

 787 

6. CONCLUSIONS 788 
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TDE is a useful complement to zero-lag FC for studying the spatiotemporal organization 789 

of spontaneous infra-slow brain activity, as manifest in rsfMRI signals. However, sampling error 790 

presents a significant hurdle to TDE in fMRI and, as we show here, is an underappreciated 791 

challenge to FC analysis as well. Different research questions will warrant different tolerances 792 

for artifact-related bias and for sampling variability, each of which can often be reduced at the 793 

cost of increasing the other. In general, more data is needed for TDE as compared to zero-lag 794 

FC analysis, which itself requires more data than task-based fMRI analyses. Nonetheless, while 795 

large datasets will permit the most informative studies of propagation throughout the brain, 796 

useful lag projection comparisons and time delays between strongly-correlated time series can 797 

be computed with more limited quantities of data. Surrogate time series may be useful to gauge 798 

the data requirements for a specific question given the nature of the data. 799 
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 1037 

 1038 

FIGURE LEGENDS 1039 

Figure 1. Computation and visualization of time delays from cross-covariance functions. 1040 

(A) Two exemplar ROI time series from the default mode network over ~200 s. (B) The 1041 

corresponding CCF (Eq. (5)) is computed here over ± 6.6 s, which is equivalent to ± 3 frames as 1042 

the repetition time was 2.2 s. The time delay (TD; �M,N) between these time series is the value at 1043 

which the absolute value of the CCF is maximal. TD can be determined at a resolution finer than 1044 

the temporal sampling density by parabolic interpolation (red) through the empirical extremum 1045 

and the points on either side of it (blue) (Eq. (7)). Zero-lag correlation (FC; �M,N) is computed from 1046 

the normalized CCF at zero-lag. (C) Toy case illustration of a TD matrix (Eq. (8)) comprising 3 1047 

voxels. TD matrices contain time delays between every pair of analyzed ROIs and are anti-1048 

symmetric by definition. Computing the mean over each column of a TD matrix generates a lag 1049 

projection map (Eq. (9)), a one-dimensional projection of lag structure (D) TD matrix from real 1050 

rsfMRI data (MSC group average). The rows and columns of this matrix have been sorted from 1051 

early-to-late and by functional network affiliation. Doing so reveals a range of delays on the 1052 

order of 1 s both within (on-diagonal) and between (off-diagonal) networks. See text for 1053 

description of ROIs. (E) Example lag projection map computed from the full MSC average TD 1054 

matrix. The projection identifies regions whose spontaneous activity on average tends to be 1055 

early (blue) or late (red) with respect to ongoing activity in the rest of the brain (Mitra et al., 1056 

2014). DAN, dorsal attention network; VAN, ventral attention network; SMN, sensorimotor 1057 

network; VIS, visual network; FPC, frontoparietal control network; LAN, language network; 1058 

DMN, default mode network. 1059 

 1060 

Figure 2. Cross-covariance among discontinuous time series. (A) x1 and x2 are two 1061 

surrogate time series. An example temporal mask shows censored time points in red (zeros). 1062 

Although x1 and x2 share a temporal mask at zero-lag, computing cross-covariance requires that 1063 

the time series be shifted with respect to one another, and with them, their associated temporal 1064 

masks. Several shifts of the temporal masks are shown. To compute covariance at a given CCF 1065 

lag, ∆, one could use all pairs of valid frames that align at that lag (all frames in black). This 1066 

approach maximizes data usage but results in a substantially different number of samples (N) at 1067 

each shift. Alternatively, one could restrict the minimum size of a block of non-censored data at 1068 

zero-lag such that each block contributes at least one sample to every CCF lag (dark green). 1069 

The minimum allowable block duration satisfying this requirement, is equal to the total number 1070 

of lags (i.e., ∆=4� + 1 = 4 frames). This approach would limit (but not eliminate) uneven 1071 

samples, at the cost of using less data. Note the symmetry of positive and negative CCF lags. 1072 

Finally, a restriction may be imposed such that an equal number of samples contribute to each 1073 

CCF lag, although this leads to still further data loss (light green). (B) CCFs for two surrogate 1074 

time series, modeled at � = 0.9 and � = 1 s, following censoring with a real temporal mask from 1075 

a moderate-motion scan (MSC10 session 1). The black and pink CCFs represent the unbiased 1076 

and biased CCF estimators, respectively. Note the triangular bias in the pink CCF, resulting in a 1077 �̂ value much lower than the true delay. Although the black CCF is quite accurate in this case, 1078 

the unbiased estimator leads to �̂ values that have comparatively higher variance and may often 1079 

exceed the true delay. 1080 

 1081 
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Figure 3. TDE dependence on data quantity, correlation magnitude, and temporal 1082 

sampling interval. Surrogate time series (� = 0.5 s) reveal strong inverse relationships between 1083 

TDE accuracy and both (A) data quantity (shown for � = 0.9 on a log-log plot spanning several 1084 

decades) and (B) correlation magnitude (shown for 60 minutes of data). Note that longer TRs 1085 

asymptote at higher RMSE, limiting their precision relative to shorter TRs. (C) TDE bias (left) 1086 

reflects parabolic interpolation bias. �̂ values tend to cluster at ½ multiples of the TR. The 1087 

variance pattern (right) is attributable to the subsample TDE that is required in fMRI analysis 1088 

and thus peaks halfway between samples. Combining these two trends yields a pattern in which 1089 

RMSE increases with increasing temporal distance between � and the nearest TR multiple, 1090 

save for a trough midway between samples owing to the lack of bias in this region. In all cases, 1091 

lower TRs yield more favorable results; however, TDE dependence on TR is small relative to 1092 

data quantity and correlation magnitude. Each data point in the Figure represents a mean 1093 

across 2,000 simulations. 1094 

 1095 

Figure 4. Manifestations of sampling error in real rsfMRI data without censoring. (A) 1096 

Distributions of pairwise time delays among 264 ROIs (upper triangular of TD matrix) at the 1097 

session (red), subject (green) and group (black) levels in the MSC dataset Increasing data 1098 

quantity reduces sampling error, as indicated by the width of the TD distributions. (B) 1099 

Distributions of all MSC session-level pairwise time delays corresponding to zero-lag correlation 1100 

magnitudes < .2 (pink) or ≥ .2 (blue), as determined by the MSC average correlation matrix. The 1101 

increased width of the pink distribution results from sampling error associated with weaker 1102 

correlations. The wide distribution also makes the bias of parabolic interpolation readily 1103 

observable: time delay estimates cluster around the TR (here, 2.2 s) and slope discontinuities 1104 

appear at every ½ TR. 1105 

 1106 

Figure 5. Temporal structure in intra- and inter-network relationships is obscured by 1107 

sampling error. (A) Subject-level (MSC01) TD (left) and |FC| (right) matrices comprising 6 mm 1108 

gray matter cube ROIs grouped by functional network (as in Fig. 1D). (B) Toy case illustrating 1109 

computation of blockwise diagonal “error” (non-square blocks are first interpolated to yield 1110 

square blocks). TD matrix blocks in (A) that appear more organized seem to comprise (roughly) 1111 

iso-latent diagonals. Thus, temporal structure of a given block (submatrix) can be estimated as 1112 

the RMSE of all time delays in the block relative to the mean delay of their respective diagonals. 1113 

Error of the perfectly structured toy submatrix amounts to 0. Repeating this process for each 1114 

unique block yields an error matrix. (C) Toy case illustrating computation of the mean |FC| 1115 

matrix. (D) MSC01 error and mean |FC| matrices computed from the TD and |FC| matrices 1116 

shown in (A). Submatrices were interpolated to be square before computing diagonals. (The 1117 

main diagonal is all zeroes by definition and therefore excluded in error computations). (E) Error 1118 

in temporal structure as a function of mean |FC|, computed for the 28 unique network blocks at 1119 

the session (MSC01 session 1), subject (MSC01) and group (MSC average) levels. Error is 1120 

strongly inversely correlated with FC magnitude at the session and subject levels. At the group 1121 

level (3,000 minutes of data), this correlation is not significant. Note overall decrease in error 1122 

and leftward shift of |�̂| values associated with increasing data. (****p <.0001; N = 28 blocks). 1123 

DAN, dorsal attention network; VAN, ventral attention network; SMN, sensorimotor network; 1124 

VIS, visual network; FPC, frontoparietal control network; LAN, language network; DMN, default 1125 

mode network. 1126 

 1127 
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Figure 6. Sampling error arising from aggressive data exclusion. (A) Scatter plots 1128 

illustrating the relationship between TD distribution width, as measured by the standard 1129 

deviation (σTD), and head motion/data loss, as measured by mean FD. Each point represents 1130 

one MSC session, color-coded by subject. Pre-censoring plots reflect a relationship with head 1131 

motion, while post-censoring plots predominantly reflect sampling error. Censoring exacerbates 1132 

an already positive relationship between mean FD and σTD. (B) Same as in (A), but for FC. 1133 

Following censoring, the relationship between σFC and mean FD changes from significantly 1134 

negative to significantly positive. (C) Distribution of correlations between |TD| and mean FD, 1135 

across all 100 sessions. Each data point included in the QC:|TD| histogram corresponds to a 1136 

single ROI pair. Null distributions, computed by randomly permuting mean FD values, are 1137 

centered near zero (black). Higher motion sessions show modestly greater magnitude time 1138 

delays (left) before censoring (red); this effect is exacerbated after data exclusion (blue) due to 1139 

increased sampling error in higher-motion sessions. (D) Same as in (C), but for |FC|. Censoring 1140 

leads to inflated |FC| (blue). (E) The left panel shows intra-subject correspondence (Spearman’s 1141 

rho) of the vectorized TD matrix averaged across the five lowest- and highest-motion sessions 1142 

for each subject. The right panel shows, for each subject, mean correspondence between each 1143 

session’s TD matrix and the censored group average. Error bars denote standard deviation. (F) 1144 

Same as in (E), but for FC, and correspondence is measured as Pearson’s r. In both (D) and 1145 

(E), stringent motion criteria adversely impact reliability (*p <.05; **p < .01; ***p < .001; N = 10 1146 

for Low:High motion correspondence, N = 100 for Group correspondence). 1147 

 1148 

Figure 7. Including small blocks of clean data improves intra- and inter-subject reliability 1149 

of TD and FC. (A) Same plots as in Figure 6E-F, but for different minimum imposed block 1150 

durations. The minimum allowable block duration (min) is 8.8 s (�∆=4� + 1� L TR). (B) Same as 1151 

in (A), but for FC. 1152 

 1153 

Figure 8. Censoring-induced sampling error in TD, but not FC, remains observable with 1154 

minimum allowable block duration. (A) Post-censoring σ:FD scatter plots as in the right 1155 

panels of Figure 6A-B, but for minimum imposed block duration equivalent to the minimum 1156 

allowable (rather than 60 seconds, as in Fig. 6). (B) Same distributions as in Figure 6C-D, but 1157 

only post-censoring and for minimum allowable block duration. Censoring-induced sampling 1158 

error inflates |TD| even with minimum allowable block duration, but this is less apparent for FC.  1159 

 1160 

Figure 9. Censoring-induced sampling error in TD and FC computed from surrogate data 1161 

remains substantial with minimum allowable block duration. (A) Post-censoring σ:FD 1162 

scatter plots as in Figure 8A, but for TD and FC distributions computed from surrogate data. The 1163 

100 real, session-specific temporal censoring masks were applied to a single set of surrogate 1164 

time series, which was constructed from the MSC average 264 x 264 FC matrix (no lags were 1165 

built in). Note that the group average correlation distribution is narrower than that obtained from 1166 

single sessions; thus σTD values are somewhat larger than in Figure 8A (more sampling error) 1167 

and σFC values are generally smaller than in Figure 8A. (B) Same distributions as in Figure 8B, 1168 

but for TD and FC computed from surrogated data as described above. Effects of censoring-1169 

induced sampling error are still present with minimum allowable block duration. 1170 

 1171 

Figure 10. |FC|-weighted lag projections improve reliability. (A) Modeling the relationship 1172 

between TDE error and zero-lag correlation magnitude. By adjusting a single parameter, ~, Eq. 1173 
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(15) (red) captures this relationship well for a range of data quantities and TRs. For each data 1174 

quantity, ~ and R2 values are based on fit to 2 s TR. (B) Example unweighted (top) and 1175 

weighted (bottom) lag projections for MSC01 session 1 (left), MSC01 (middle; TD averaged 1176 

over all 10 sessions prior to lag projection computation), and MSC01-10 (right; TD first averaged 1177 

over all 100 sessions). (C) σ:FD plots depicting the width of the distributions of lag projection 1178 

values for each MSC session as a function of mean FD. Weighting increases distribution widths 1179 

as well as the relationship between distribution width and data loss. (D) Correspondence of 1180 

session-level unweighted and weighted lag projections with group unweighted lag projection. 1181 

Weighting strongly improves reliability. (***p < .001). 1182 
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