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Abstract

The discovery that spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals con‐
tain information about the functional organization of the brain has caused a paradigm shift in
neuroimaging. It is now well established that intrinsic brain activity is organized into spatially seg‐
regated resting-state networks (RSNs). Less is known regarding how spatially segregated net‐
works are integrated by the propagation of intrinsic activity over time. To explore this question,
we examined the latency structure of spontaneous fluctuations in the fMRI BOLD signal. Our data
reveal that intrinsic activity propagates through and across networks on a timescale of ∼1 s.
Variations in the latency structure of this activity resulting from sensory state manipulation (eyes
open vs. closed), antecedent motor task (button press) performance, and time of day (morning vs.
evening) suggest that BOLD signal lags reflect neuronal processes rather than hemodynamic de‐
lay. Our results emphasize the importance of the temporal structure of the brain's spontaneous
activity.
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it has been recognized since the inception of fMRI that the blood oxygen level-dependent
(BOLD) signal exhibits spontaneous fluctuations (Purdon and Weisskoff 1998). Although this phe‐
nomenon was initially regarded as noise, Biswal and colleagues showed that spontaneous fluctua‐
tions of the BOLD signal are temporally synchronous within the somatomotor system (Biswal et al.
1995). This basic result has since been extended to multiple functional systems spanning the en‐
tire brain (Buckner et al. 2011; Choi et al. 2012; Power et al. 2011; Yeo et al. 2011). Synchronicity
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of intrinsic activity is widely referred to as functional connectivity; the associated topographies are
known as resting-state networks [RSNs; equivalently, intrinsic connectivity networks (Fox and
Raichle 2007)]. The importance of understanding intrinsic activity is underscored by the fact that
RSNs recapitulate the topographies of fMRI responses to a wide variety of sensory, motor, and
cognitive task paradigms (Cordes et al. 2000; Smith et al. 2009), providing a powerful means of
delineating brain functional organization without the need for subjects to perform tasks. RSNs
also provide an important window on the pathophysiology of various diseases (Fox and Greicius
2010; Zhang and Raichle 2010). These results establish that intrinsic brain activity is spatially
structured, linked to the representation of function, and clinically relevant.

Almost all prior fMRI studies of intrinsic brain activity have used either seed-based correlation
mapping (Biswal et al. 2010) or spatial independent components analysis (sICA) (Beckmann et al.
2005). Critically, both of these computational strategies incorporate the assumption that activity
within RSNs is exactly synchronous. However, resting-state fMRI studies in rat and human suggest
that intrinsic activity is spatiotemporally structured (Majeed et al. 2009, 2011). Ample evidence of
temporally structured intrinsic activity has been observed in the mouse with voltage-sensitive dye
(VSD) imaging (Ferezou et al. 2007; Han et al. 2008; Huang et al. 2010; Mohajerani et al. 2010,
2013; Sato et al. 2012). In humans, Garg and colleagues (Garg et al. 2011) performed vector auto‐
regressive (VAR) modeling of intrinsic activity followed by dimensionality reduction and identified
two main spatiotemporal streams propagating through the brain. More recently, Smith and col‐
leagues (Smith et al. 2012) used temporal independent component analysis (tICA) to isolate multi‐
ple “temporal functional modes” in human resting-state fMRI data. Implicit in this analysis is the
notion that intrinsic brain activity can be decomposed into spatiotemporal components. However,
the temporal features of these components were not explicitly explored.

Here we specifically focus on the temporal features of intrinsic brain activity as expressed in its
latency structure. We demonstrate that lags in intrinsic activity, as reflected in the BOLD signal, are
highly reproducible across several large cohorts of young healthy adults. Moreover, this structure
is modified, with appropriate focality, by the state of the eyes (open or closed), recent motor task
performance, and time of day (i.e., morning vs. evening). When represented in three-dimensional
(3D) image format, iso-lag contours superficially resemble RSNs. However, closer analysis shows
that lag topography actually is orthogonal to RSNs. Thus each RSN encompasses a range of early
and late regions, and no RSN leads or follows any other. Rather, a temporal structure emerges that
provides a framework for the functional integration of more conventionally defined RSNs.

THEORY

Conventional seed-based correlation analysis involves computation of the Pearson correlation, r,
between the time series extracted from a seed region, e.g., x (t), and a second time series, x (t),
extracted from other loci [either single voxels or another region of interest (ROI)]. Thus

rx1x2=1σx1σx21T∫x1(t)⋅x2(t)dt (1)(1)
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where σ  and σ  are the temporal standard deviations of signals x  and x  and T is the interval of
integration. Here we generalize the assumption of exact temporal synchrony and compute lagged
cross-covariance functions. Thus

Cx1x2(τ)=1T∫x1(t+τ)⋅x2(t)dt (2)(2)

where τ is the lag (in units of time). The value of τ at which C (τ) exhibits an extremum defines
the temporal lag (equivalently, delay) between signals x  and x  (Konig 1994). (Alternative strate‐
gies for latency analysis are discussed in appendix.) Clearly, Eqs. 1 and 2 are related. Thus C (0)
= σ σ r . In other words, the Pearson correlation is equal to the cross-covariance at zero lag,
normalized by the signal standard deviations. Because cross-covariance functions are not normal‐
ized, they retain sensitivity to signal magnitudes, which is critical in the present analyses. Although
cross-covariance functions can exhibit multiple extrema in the analysis of periodic signals, BOLD
time series are aperiodic (He et al. 2010; Maxim et al. 2005) and almost always give rise to lagged
cross-covariance functions with a single, well-defined extremum, typically in the range ±0.5 s. We
determined the x- and y-coordinates of the extremum using parabolic interpolation (Fig. 1).

Given a set of n time series, {x (t),x (t), . . . ,x (t)}, extracted from n ROIs, a lagged cross-covariance
function can be computed between every pair of time series. Thus

Cxixj(τ)=1T∫xi(t+τ)⋅xj(t)dti,j∈1,2,. . .,n (3)(3)

C (τ) is an n × n matrix that describes the covariance structure of the signal system parametric in
lag. Finding all τ  corresponding to the extrema, a , of C (τ) yields the anti-symmetric matrix, T:

T=[τ1,1. . .τ1,n⋮⋱⋮−τ1,n⋯τn,n] (4)(4)

The diagonal entries of T are necessarily zero, as any time series has zero lag with itself.
Moreover, τ  = −τ , since time series x (t) preceding x (t) implies that x (t) follows x (t) by the
same interval. T is widely known as a time-delay (TD) matrix and represents all lag information
contained in {x (t),x (t), . . . ,x (t)}.

The TD matrix does not contain any information regarding signal magnitudes. Therefore, the rela‐
tive contribution of each signal pair to the entire spatiotemporal process is lost. To recover signal
magnitude information, we define a second anti-symmetric matrix, A:

A=[τ1,1⋅a1,1⋯τ1,n⋅a1,n⋮⋱⋮−τ1,n⋅a1,n⋯τn,n⋅an,n] (5)(5)

A is anti-symmetric for the same reasons as T is. In A, the time delays, τ , are weighted by the mag‐
nitude of the signals at the extremum of C (τ). We refer to A as an amplitude-weighted time-delay
(AWTD) matrix.
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We projected the multivariate data represented in the TD and AWTD matrices onto one-dimen‐
sional (1D) maps, using the technique described by Nikolic and colleagues (Nikolic 2007;
Schneider et al. 2006). We refer to these 1D maps as latency projections. Operationally, the projec‐
tion is done by taking the mean across the columns of T (Eq. 4) and A (Eq. 5), that is,

Tp=(1/n)[∑j=1nτ1,j . . . ∑j=1nτn,j] (6)(6)

and

Ap=(1/n)[∑j=1nτ1,j⋅a1,j . . . ∑j=1nτn,j⋅an,j] (7)(7)

where T  and A  are 1 × n latency projections of the TD and AWTD matrices, respectively. Thus T
and A  are row vectors whose elements represent latency and amplitude-weighted latency at each
ROI. These projections can be represented in 3D image format (e.g., Fig. 2). Critically, the projec‐
tion technique is valid only if the TD and AWTD matrices are significantly transitive. Transitivity
refers to the existence of consistent lag relations. Perfect transitivity means that the sum of lags
over all closed loops is exactly zero. Given measurement error, perfect transitivity is never ob‐
served in real neural data. A test for significant transitivity can be implemented by considering all
time series triples (Nikolic 2007). Partial transitivity is defined as the fraction of all possible triples
in a TD matrix that exhibit transitivity. A TD matrix is said to be significantly transitive if the frac‐
tion of all possible triples that exhibit transitivity significantly exceeds the number expected by
chance alone (P < 0.05). All TD and AWTD matrices presented here satisfy this condition.
Additional details regarding the projection technique are given in Schneider et al. (2006).

Latency projections represent spatiotemporal processes in the brain. An estimate of the regional
amplitude (in units of BOLD percent change) of each such process can be computed as the quo‐
tient of A  divided by T . Thus

Amp = A /T (8)(8)

where the division is performed elementwise. Amp is a 1 × n row vector, which we refer to as the
latency process amplitude (LPA) image, that estimates the contribution of the spatiotemporal
process to the total BOLD time series at each ROI. To compute this estimate, we first apply princi‐
pal component (PC) analysis (PCA) to the complete set of BOLD time series. PCA assigns a percent‐
age of the variance in the BOLD time series to each PC. Amp is projected onto each PC to find a
weight w :

wiAmp=Proj(Amp,PCiBOLD),i=1 . . . n (9)(9)

These weights are used to compute a weighted sum of PC variances:

VarLPBOLD=∑iwiAmp⋅VarPCiBOLD,i=1 . . . n (10)(10)
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Thus each latency projection accounts for a computable fraction, Var , of BOLD time series vari‐
ance. Analogously, the TD matrix is subjected to PCA, and latency projections (in units of seconds)
are projected onto the TD matrix eigenvectors.

wiLP=Proj(LP,PCiTD),i=1 . . . n (11)(11)

These weights are used to compute the variance of the TD matrix accounted for by the latency
projection.

VarLPTD=∑iwiLP⋅VarPCiTD,i=1 . . . n (12)(12)

IMAGING METHODS

Participants. Four extant, independent data sets were analyzed in this study. A large data set (n =
692) was obtained from the Harvard-MGH Brain Genomics Superstruct Project (Yeo et al. 2011)
(data set 1, Table 1). The 692 subjects in data set 1 were randomly divided into 7 cohorts of ∼99
subjects each to test the reproducibility of our analyses. Three additional data sets (Fox et al.
2005b, 2007; Shannon et al. 2013) were previously acquired at the Neuroimaging Laboratories of
the Mallinckrodt Institute of Radiology at the Washington University School of Medicine (data sets
2–4, see Table 1). All subjects were young adults screened to exclude neurological impairment and
psychotropic medications. Demographic information and acquisition parameters are given in 
Table 1.

MRI acquisition. Imaging was performed with a 3T Siemens Allegra (Washington University) or a
3T Siemens Tim Trio (Harvard-MGH) scanner. Functional images were acquired with a BOLD con‐
trast-sensitive gradient echo echo-planar sequence (parameters listed in Table 1). In data set 1, all
participants were simply instructed to keep their eyes open, remain still, and not fall asleep. Two
fMRI runs were acquired per subject. In data set 2, three runs were acquired in the eyes-open vis‐
ual fixation condition and three runs were acquired with eyes closed (Fox et al. 2005b). In data set
3, we contrasted two resting-state runs separately acquired before and after an intervening run
during which subjects performed an attention-demanding button-press task (Fox et al. 2007).
During the button-press task, subjects were instructed to press a button in response to a visual
cue (dimming of the fixation cross hair). In data set 4, we contrasted two resting-state runs ac‐
quired in the morning (∼1 h after each subject's usual wake time) and evening (∼2 h before usual
bed time). In all data sets, anatomical imaging included one sagittal T1-weighted magnetization
prepared rapid gradient echo (MP-RAGE) scan (T1W) and one T2-weighted scan (T2W). The MP-
RAGE sequence in data set 1 was multiecho.

fMRI preprocessing. Initial fMRI preprocessing followed conventional practice (Shulman et al.
2010). Briefly, this included compensation for slice-dependent time shifts, elimination of system‐
atic odd-even slice intensity differences due to interleaved acquisition, and rigid body correction
of head movement within and across runs. Atlas transformation was achieved by composition of
affine transforms connecting the fMRI volumes with the T2W and T1W structural images. Head
movement correction was included with the atlas transformation in a single resampling that gen‐
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erated volumetric time series in (3 mm)  atlas space. Additional preprocessing in preparation for
latency analysis included spatial smoothing [6-mm full width at half-maximum (FWHM) Gaussian
blur in each direction], voxelwise removal of linear trends over each fMRI run, temporal low-pass
filtering retaining frequencies below 0.1 Hz, and zero-meaning each voxel time series. Spurious
variance was reduced by regression of nuisance waveforms derived from head motion correction
and time series extracted from regions (of “noninterest”) in white matter and cerebrospinal fluid
(CSF). Nuisance regressors included also the BOLD time series averaged over the brain (Fox et al.
2005b). Additionally, we employed frame-censoring with a threshold of 0.5% root mean square
frame-to-frame intensity change (Power et al. 2012). Frame-censoring excluded 3.8 ± 1.1% of all
magnetization steady-state frames from the correlation mapping computations.

Gray matter segmentation and ROI definition. All present analyses were restricted to gray matter. A
gray matter mask was constructed on the basis of a group-averaged [ F]fluorodeoxyglucose
positron emission tomography (FDG-PET) image. Group-level gray matter masks conventionally
are constructed by segmenting structural scans, e.g., using FreeSurfer (Fischl 2012). Here we
achieved the same objective by thresholding a group average metabolic image, exploiting the fact
that gray matter has approximately uniform FDG uptake. This strategy generates smoother gray
matter partitions than structural segmentation. The source FDG-PET image, in (3 mm)  atlas
space, was generated in a separate experiment (Vaishnavi et al. 2010) and was thresholded to ex‐
clude white matter, large vessels, and CSF spaces. To reduce the dimensionality of the latency
analyses (number of ROIs), the gray matter mask was divided into (6 mm)  cubic ROIs, discounting
any cubes containing fewer than 50% gray matter voxels.

RESULTS

Resting-state latency projections. Latency projection results obtained in data set 1 are displayed in 
Fig. 2. The latency projection result (Fig. 2, A and C) spans ∼1 s between the earliest and latest ar‐
eas of the brain. The principal features of this map are 1) a high degree of bilateral symmetry and
2) spatially distinct early and late regions. The earliest and latest brain regions are the posterior
cingulate cortex/precuneus (PCC) and the cerebellum, respectively. The amplitude-weighted la‐
tency projection (Fig. 2B) and the unweighted TD latency projection (Fig. 2A) exhibit similar to‐
pographies. Figure 2D illustrates the across-subgroup spatial correlogram corresponding to the
seven subgroups comprising data set 1. This correlogram quantitatively demonstrates the spatial
similarity between TD and AWTD latency projections (off-diagonal blocks) as well as reproducibil‐
ity across subgroups (diagonal blocks).

The LPA image (Fig. 3, A and B; see Eq. 8 for derivation) has high values in brain areas that
strongly contribute to the brain's latency structure. As is true of the results shown in Fig. 2, the
LPA maps are highly similar across subgroups of data set 1 (Fig. 3C). High-amplitude values ap‐
pear in the default mode network (DMN) (Raichle et al. 2001), as well as some other areas, most
notably the visual cortex. The cerebellum, as a whole, contributes relatively little to the brain's la‐
tency structure except in parts that belong to the DMN (Crus II and the inferior vermis). We note
that the topographies of lag (Fig. 2, A and C) and LPA (Fig. 3, A and B) are distinct.
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The amplitude map can be used to estimate the relative contribution of the corresponding latency
projection to the total variance of the BOLD signal within gray matter. This accounting is analo‐
gous to fractionating variance by PCA. In our data, on average, 20.1% (±0.7%) of the total variance
in the whole brain BOLD signal time series is explained by the latency projection (Eq. 10).
Moreover, 71.5% (±1.4%) of the TD matrix variance is attributable to the latency projection (Eq.
12). Therefore, the latency process we have identified is a significant driver of sequential BOLD ac‐
tivity in the resting state, but it represents only a first component.

State contrasts. The effect of state contrast on the latency structure of intrinsic activity was stud‐
ied in three experiments. We first compared the eyes-open versus the eyes-closed condition (EO-
EC) (data set 2, Table 1). In the eyes-open state, subjects were instructed to maintain visual fixation
on a small cross hair. This state contrast is known to modulate the amplitude of intrinsic BOLD ac‐
tivity in visual cortex (Marx et al. 2004; McAvoy et al. 2008). The latency projection correlates of
this experiment are shown in Fig. 4. The most prominent change in latency was a shift toward
later values in the dorsal visual stream with eyes open compared with eyes closed. Similar
changes were observed in the ventral visual stream, curiously omitting V1. The LPA also showed a
large shift toward higher values in the dorsal visual stream with eyes closed compared with eyes
open. This result is consistent with numerous previous reports documenting reduced amplitude
of BOLD fluctuations in the eyes-open state (Bianciardi et al. 2009; Marx et al. 2004; McAvoy et al.
2008). This set of observations is significant in the light of potential relations between latency and
perfusion (see below).

In the second experiment, we compared the resting state after versus before performance of a
cued right-hand button-press task (Fox et al. 2006, 2007). During the task fMRI run, subjects were
instructed to press a button in response to a visual cue (dimming of the fixation cross hair). The
most prominent latency change was a shift toward later latency values in left ventral motor cortex
following task performance (Fig. 5). A shift toward earlier latency values was observed in bilateral
striatum, although this effect was significant in only a small cluster of voxels in the right putamen (
Fig. 5D). As opposed to the EO-EC experiment, this contrast was computed over two identical rest‐
ing-state conditions (i.e., before and after task performance) rather than concurrent state contrast
(i.e., eyes open at rest vs. eyes closed at rest). Consequently, the change in latency structure seen
after the button-press task is a function of antecedent task performance. The LPA showed a large
reduction in the PCC (Fig. 5E). No LPA change was observed in the voxels showing significant la‐
tency shifts. Thus the LPA and latency effects were spatially dissociated in the button-press para‐
digm, whereas in the EO-EC experiment the effects were spatially overlapping.

Finally, we contrasted resting-state latency in data acquired shortly after waking in the morning
and just prior to retiring in the evening (Shannon et al. 2013). This contrast was chosen specifi‐
cally because it revealed significant diurnal changes in functional connectivity bilaterally in en‐
torhinal cortex (magenta region in Fig. 6E). In the morning, entorhinal cortices were functionally
connected prominently to anterior insula. In the evening, entorhinal cortices exhibited strong
functional connectivity with cortical areas involved in memory retrieval as well as a significant re‐
duction in functional connectivity with anterior insula. The present results, shown in Fig. 6, A–D,
demonstrate significant latency changes in the entorhinal cortices from late in the morning (
Fig. 6A) to relatively early in the evening (Fig. 6B). In contrast, latency shifted in the opposite di‐
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rection in insular cortex (i.e., later in the evening compared with morning). There were no statisti‐
cally significant changes in LPA in the morning vs. evening contrast, again demonstrating that la‐
tency and amplitude effects can be dissociated.

Latency in relation to RSNs. Inspection of Fig. 2A suggests a similarity in spatial scale between
RSNs (Fig. 7) and latency maps. This observation raises the question of the relation between RSNs
and latency maps. To address this question, we computed the mean latency within each RSN. The
obtained result was remarkably close to zero in every RSN (root mean square latency value aver‐
aged over RSNs = 0.03 s). This outcome is not imposed by our analytic strategy. We generated sur‐
rogate RSNs matched in spatial frequency and scale to true RSNs to test whether the orthogonal
relationship between RSNs and latency structure could be attributed to chance (Fig. 7; see appen‐
dix for more details). This analysis indicated that the likelihood of observing a root mean square
value of 0.03 s is <1% (Fig. 8), suggesting that the observed latency-RSN relationship is not attrib‐
utable to chance alone. The implication of this result is that no RSN is either early or late. Instead,
activity propagates both through and across RSNs.

Figure 9 shows the TD matrix corresponding to the results shown in Fig. 2. Critically, the ROIs
have been ordered first by RSN membership (Hacker et al. 2013) (see Fig. 7) and, within RSN, by
temporal order using latency projections by RSN block. Figure 9 also includes voxels assigned to
the CSF category. The diagonal blocks in the TD matrix represent latency within RSNs (e.g., within
DMN latencies, outlined in white); the off-diagonal blocks represent latencies across RSNs.

Figure 9 includes some features that are algebraically constrained. In particular, the TD matrix is
anti-symmetric. Therefore, each diagonal block is anti-symmetric as well. However, the algebra
does not impose any relation between latency and RSN membership. Therefore, the structure evi‐
dent in Fig. 9 is informative. The diagonal blocks show a wide range and well-ordered distribution
of latencies. Thus activity propagation is present within each RSN. The CSF block is much less well
ordered even though it was analyzed identically to the true RSNs. This distinction demonstrates
that the observed intra-RSN latency structure reflects brain organization at the systems level and
is not an algebraic artifact.

The off-diagonal blocks represent activity propagation across networks. Each block contains well-
ordered early, middle, and late components much like the diagonal blocks. Again, this is not alge‐
braically imposed. To obtain a numerical measure of latency spread within blocks, we computed
the latency standard deviation. The mean value of this measure across the diagonal blocks was
0.15 s. The same result (0.15 s) was obtained in off-diagonal blocks. The existence of latency or‐
dering within off-diagonal blocks suggests organized lag relations between constituent parts of
RSNs. As an example, consider the off-diagonal block corresponding to the DMN paired with the
dorsal attention network (DAN), outlined in white in Fig. 9; a well-ordered progression from early
(blue) to late (red) is evident, indicating that parts of the DMN lead the DAN and vice versa. Again,
a comparison with the CSF blocks is informative. Very little structure is evident in the DAN:CSF
block (outlined in white in Fig. 9), reflecting the absence of organized reciprocal latency.
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To examine the possibility that the latency process is present with more power within certain
RSNs or RSN pairs, we computed the AWTD matrix (Fig. 10), in which ROIs are ordered as in Fig. 9
. Since the lag values are weighted by amplitude, ROI interactions with little power have values
closer to zero (green hues in Fig. 10). As above, we computed a measure of spread within blocks
as the amplitude-weighted latency standard deviation. Among the RSNs, the DMN and visual net‐
work (VIS) exhibited the greatest spread of amplitude-weighted latencies. This feature appears in 
Fig. 10 as a high level of blue/red saturation. In contrast, the CSF blocks are comprised primarily
of values near zero (green in Fig. 10). These results are in line with Fig. 3. The critical feature in 
Fig. 10 is that the diagonal and off-diagonal blocks are comparably saturated. In quantitative
terms, the diagonal and off-diagonal blocks exhibit comparable mean standard deviations (0.35
and 0.33, respectively, in units of amplitude·seconds). Combining the results shown in Figs. 9 and 
10 implies that lag amplitudes are similarly distributed within and across RSNs.

Control analyses. We considered three nonneuronal explanations for the spatial patterns of BOLD
latency projections (Fig. 2). First, is there a relationship to vascular territories (anterior cerebral
artery, middle cerebral artery, posterior cerebral artery)? Reference to standard vascular terri‐
tory maps (Damasio 1983) shows no clear correspondence. In particular, Fig. 2 shows latency
contrast around the ventral central sulcus, whereas this part of the brain and widely surrounding
areas are all middle cerebral artery territory. Although different vascular territories see arterial
blood at different latencies with respect to the aorta, there is no parsimonious mechanism by
which this difference could translate to differential BOLD signal latencies. Second, better-perfused
tissue may be expected to show a more prompt response to neural activity. In fact, precisely this
mechanism probably accounts for delayed BOLD signals in the vicinity of recent infarcts (Amemiya
et al. 2014). Accordingly, we compared latency projections to a group average perfusion map con‐
structed on the basis of PET data (Vaishnavi et al. 2010). A scatterplot of cerebral blood flow
(CBF) versus latency was constructed (Fig. 11). Inspection of this plot showed no clear evidence
of a systematic relation between CBF and latency (Pearson r = −0.05). A negative correlation is in
line with the theory that better-perfused tissue shows more prompt BOLD response to neuronal
activity. However, this effect is negligible, as it only explains 2.5% of latency variance.

Finally, it is well known that the BOLD signal is strongly weighted toward the venous side of the
circulation (Hall et al. 2002). Therefore, the BOLD signal in cerebral veins should appear at late
latencies (Lee et al. 1995). To investigate this possibility, a group average “venogram” was con‐
structed by computing the voxelwise beta-map corresponding to the differentiated global signal
(see appendix for details). Thresholding this map to retain only negative values generated an im‐
age demarcating the major venous structures in the head (Fig. 12). Reference to this map demon‐
strated that cerebral venous structures do account for some features of the latency map, in partic‐
ular, lateness in the superior and sagittal sinuses. Most of the vascular spaces, however, were al‐
ready excluded from our analysis by our gray matter mask (see imaging methods). Thus most of
the features evident in Fig. 2 do not correspond to the “venogram” and, therefore, are not attrib‐
utable to cerebral venous outflow.

DISCUSSION
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Summary of present findings. We used latency projections (Nikolic 2007) to study the lag struc‐
ture of the resting state BOLD signal in healthy young adults. Substantial consistency was demon‐
strated over seven large cohorts. The amplitude of lagged activity was highest in the default mode,
control, and visual networks. LPA estimation indicated that the spatiotemporal process shown in 
Fig. 2A accounts for ∼20% of the resting-state BOLD signal. These results provide a means of
studying integration within and across RSNs, which so far have been defined primarily in terms of
network segregation.

We studied the effects of three state contrasts (eyes open vs. eyes closed, before vs. after right-
handed button press in response to visual cue, morning vs. evening) to test whether latency struc‐
ture depends on neuronal activity. Temporal structure was modified, with appropriate focality, in
all three experiments, suggesting that the latency structure is indeed neuronally driven.

TD matrices (Fig. 9) suggest functional integration within and across RSNs. Surprisingly, we found
that the temporal structure of the BOLD signal is orthogonal to RSN topography. In other words,
there is equivalent activity propagation both within and across RSNs. The well-ordered organiza‐
tion of activity propagation within and across RSNs contrasts with the highly disorganized activity
evident in CSF, demonstrating that the observed propagation structure is not algebraically im‐
posed. By generating surrogate RSNs, we demonstrated that the orthogonal relationship between
RSNs and latency is not attributable to chance (Fig. 7, appendix).

Finally, we investigated the effects of CBF and large vascular structures on latency structure. CBF
was found to have negligible explanatory power (Fig. 11). The superior sagittal sinus contributed
some late features in the latency map, but masking the latency image by an fMRI-derived
“venogram” (see appendix) demonstrated that most latency features are not attributable to large
vascular structures (Fig. 12).

Observed latency in relation to vascular physiology. The BOLD signal is governed by the local con‐
centration of deoxyhemoglobin, which is paramagnetic and, therefore, an MRI contrast agent
(Ogawa et al. 1990). Changes in the fMRI BOLD signal, either task related or spontaneous, reflect
changes in blood flow that are greater than changes in oxygen consumption. These changes have
been physiologically linked to changes in local field potentials (Goense and Logothetis 2008;
Logothetis 2008; Logothetis et al. 2001; Logothetis and Wandell 2004) and cellular metabolism
[i.e., changes in cellular redox states (Mintun et al. 2004; Vern et al. 1997, 1998) and aerobic gly‐
colysis (see Raichle and Mintun 2006 for review)]. Most recently, propagated activity in the mouse
brain (see Neurophysiology of latency) has been visualized with VSD imaging (Mohajerani et al.
2010, 2013), which entirely avoids the question of neurovascular coupling. Nevertheless, concern
lingers that regional variations in the latency of neurovascular coupling could largely account for
observed delay structure (Friston 2009, 2011; Friston et al. 2013; Friston and Dolan 2010;
Handwerker et al. 2004).

Hemodynamic and neuronal contributions to observed lag structure cannot be separated on the
basis of the BOLD signal alone. However, we can adjudicate between a primarily neuronal versus
primarily hemodynamic explanation for observed lag structure by considering the plausibility of
each of these explanations for our results.
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First, we find changes in latency structure as a result of state contrasts (Figs. 4–6). A vascular ex‐
planation for this result implies focal changes in the dynamics of neurovascular coupling. It might
be argued that the latency differences in Figs. 4 and 6 reflect changes in sympathetic tone (due to
eye closure or time of day) leading to altered vascular dynamics. However, Fig. 5 contrasts two
resting states separated by a task run. It is highly plausible that task performance leaves a neural
trace. In fact, such traces must underlie episodic memory and skill acquisition. It is much less plau‐
sible, although not inconceivable, that prior task performance leaves a trace manifesting as focally
altered vascular hemodynamic coupling. Second, latency projections are orthogonal to RSNs (
Figs. 7 and 8) in a manner not attributable to chance. Thus there exists a structured relationship
between RSNs, which unquestionably reflect neuronal activity, and latency projections. A purely
vascular explanation for this relationship is difficult to imagine, although we cannot exclude it.
Conversely, a neuronal explanation for this relationship suggests that lagged activity plays a role in
functional integration across segregated brain networks. Third, let us suppose that regional differ‐
ences in neurovascular coupling delays do exist. We further assume that neural processes are ef‐
fectively simultaneous, that is, we neglect axonal conduction delays on the order of tens of mil‐
liseconds (Vicente et al. 2008). Then, by hypothesis, some regions transduce neural activity into a
BOLD signal before other regions. This time shift can be represented as a set of ordered relations,
as illustrated in Fig. 2. We show in the appendix that such a structure gives rise to a lag matrix of
dimensionality exactly 1. However, Bayesian information criterion analysis (Minka 2001) indicates
that the most likely dimensionality of the BOLD TD matrix (Fig. 9) is 2 (Fig. 13, see appendix for
details). This result implies the existence of two transitive systems of lags within the TD matrix.
Regionally dependent latencies in neurovascular coupling mathematically can account for only
one of these (see appendix). Therefore, regionally dependent hemodynamic delays, even if they
exist, cannot account for the entirety of the observed latency structure.

Although these considerations argue for a neuronal basis for latency structure, the present fMRI
data provide only indirect evidence. Future direct tests combining other modalities (e.g., metabolic
or electrophysiological) with fMRI will be necessary to definitely assess the physiological basis of
latency structure.

Neurophysiology of latency. Several features in our latency projection results are consistent with
previous identification of sources and sinks of intrinsic activity obtained with VAR modeling.
Sources and sinks correspond, respectively, to early and late areas in the latency structure.
Specifically, Garg and colleagues found that inferior parietal cortex and PCC are sources of propa‐
gated activity (Garg et al. 2011). This result matches our assignment of these regions as early in
the latency projection (Fig. 2). Similarly, Deshpande and colleagues identified the DMN as a major
locus of propagated intrinsic brain activity, in agreement with our amplitude map result (Fig. 3)
(Deshpande et al. 2011). Moreover, the anterior prefrontal cortex was reported to be a sink of
propagated activity, which matches our assignment of this region as late in the latency projection (
Fig. 2). Many of the above-discussed features were also obtained by Majeed and colleagues with a
novel iterative technique based on computing lagged correlation functions (Majeed et al. 2011).

Propagated activity is well documented in the electrophysiology literature. Recent work in the
mouse using VSD imaging has documented wavelike propagation of both evoked and spontaneous
activity (Ferezou et al. 2007; Han et al. 2008; Huang et al. 2010; Mohajerani et al. 2010, 2013; Sato
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et al. 2012). Although VSD is capable of millisecond temporal resolution, the observed sponta‐
neous activity motifs in the mouse cortex play out over ∼0.5 s (Mohajerani et al. 2010, 2013), in
close agreement with our results (Fig. 2A). The speed of spontaneous activity propagation in the
mouse has been estimated as ∼0.2 m/s (Han et al. 2008; Mohajerani et al. 2010). In our data, we
take as typical a latency difference of 0.5 s over 10 cm, which yields a propagation speed of 0.2
m/s, in agreement with the mouse estimate. Slow wave propagation has also been documented
during slow wave sleep (SWS). The speed of slow wave propagation in SWS has been estimated as
0.4–6.3 m/s (Massimini et al. 2004; Murphy et al. 2009b). This speed of propagation estimate is
reasonably comparable to the estimate from our data (0.2 m/s, see above), given that the SWS fig‐
ure was obtained on the basis of scalp electroencephalography (EEG) and inverse source model‐
ing (Murphy et al. 2009b). Interestingly, Murphy and colleagues report that the DMN is preferen‐
tially involved in slow wave propagation during SWS (Murphy et al. 2009b), which is concordant
with our finding that the DMN is represented with high amplitude in the latency projection (Fig. 3).
Although SWS and waking quiet rest are distinct states, intrinsic activity exhibits many similarities
across levels of arousal (Larson-Prior et al. 2009; Vincent et al. 2007). RSNs are present, albeit
with arousal-dependent features, in both wakefulness and SWS (Samann et al. 2011). Substantial
evidence indicates that the slow waves in SWS represent UP and DOWN state oscillations (Huber
et al. 2004; Massimini et al. 2004; Murphy et al. 2009b; Yuste 1997). It has been reported that UP
and DOWN states persist during wakefulness, although they are intermixed with other activity and
are much less periodic (Vyazovskiy et al. 2011). If so, the same mechanism may drive slow activity
in waking and SWS. Thus there exists a plausible electrophysiological mechanism underlying slow
propagated BOLD activity.

Murphy and colleagues find that sources and sinks of spontaneous activity in the mouse recapitu‐
late patterns of activity observed in task responses (Mohajerani et al. 2013). In other words, pri‐
mary areas (such as primary somatosensory cortex) tend to be sources in task-evoked and spon‐
taneous activity, while higher-order areas such as the parietal lobule are sinks during task-evoked
and spontaneous activity. Our results show partial correspondence with this principle. In particu‐
lar, primary motor cortex is early and superior parietal lobule is late (Fig. 2C), in agreement with
task-evoked studies in mice (Mohajerani et al. 2013). Additionally, lateral prefrontal cortex exhibits
very delayed response to item recognition trials (Schacter et al. 1997), which is in agreement with
our spontaneous activity lag results (Fig. 2, A and C). However, primary sensory and auditory cor‐
tices are late in our data (Fig. 2C), in contrast with the Murphy results. These divergences could be
attributable to differences in species or technique, but we believe that the more likely explanation
lies in a fundamental distinction between spontaneous and task-evoked activity. Task-evoked BOLD
responses in humans exhibit a wide variety of waveforms and variable mixtures of sustained and
transient components, depending on locus and task paradigm (Fox et al. 2005a; Gonzalez-Castillo
et al. 2012). Moreover, these responses play out on a timescale on the order of several seconds. In
contrast, our lag results are generally confined to a range of ±0.5 s. Thus, although there may be
some shared motifs between lagged spontaneous and task-evoked activity, the two phenomena
most likely represent different processes with different temporal structures (see Raichle 2011 for
further discussion).
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Functional significance of latency. It is striking that the resting-state BOLD signal, which has been
used to identify spatially segregated functional networks (Power et al. 2011; Yeo et al. 2011), also
carries a signature of functional integration within and across RSNs. Critically, resting-state activity
propagation is directed, as reflected in a latency map (Fig. 2). Thus there is a stereotyped pattern
of activity propagation in the human brain, such that, on average, certain brain loci initiate propa‐
gated activity (early regions) while other loci are destinations (late regions). While it is widely be‐
lieved that cross-network communication underlies brain function (Bressler and Menon 2010),
discussion of this point largely derives from task-based experiments. Our analyses reveal loci cor‐
responding to sources and sinks of propagated intrinsic activity. Remarkably, many of the same
loci have been independently identified, on the basis of task-based fMRI, as key cortical nodes reg‐
ulating behavior (Bressler and Menon 2010; Nelson et al. 2010). Specifically, these loci (Fig. 2C)
are PCC (early), ventromedial prefrontal cortex (VMPFC, late), dorsal anterior cingulate cortex
(dACC, early), anterior insula (AI, late), posterior parietal cortex (PPC, early), and dorsolateral pre‐
frontal cortex (DLPFC, late). These areas represent three pairs of regions belonging to the default
mode, salience, and fronto-parietal control networks, respectively. It is probably not coincidental
that, within each network pair, one region is early while the other is late. Indeed, the orthogonality
of RSN and latency topography suggests that propagated activity in the resting state may serve as
a framework for RSN integration. Thus analyzing latency structure might be a useful method to in‐
crease our understanding of cognitive processes, whether they are physiological or pathological
in nature.

One feature of our results that deserves further comment is that the cerebellum as a whole is late
in the latency map (Fig. 2A). The cerebellum is widely regarded as responsible for reflexive adjust‐
ments during active behavior (Buckner et al. 2011; Leiner et al. 1991; Strick et al. 2009), for exam‐
ple, adjusting motor programs in response to unanticipated changes in environmental parameters
(e.g., load). In the resting state, the role of the cerebellum appears to be minor, as reflected by the
low amplitude of intrinsic cerebellar BOLD fluctuations (Li et al. 2012; Logothetis and Wandell
2004). Our data suggest that, at least in the resting state, the primary direction of information flow
appears to be from prosencephalon to cerebellum. This observation is consistent with the current
understanding of the cerebellum as primarily a receiver of multimodal information from the cere‐
bral cortex (Leiner et al. 1991). Nonetheless, we cannot exclude the possibility that the vascular
response to neural demand is generally late in the cerebellum. However, this explanation would be
specific to the cerebellum as opposed to the posterior circulation, because visual and infero-tem‐
poral cortices are mostly early.

State contrasts in latency. The original motivation for examining state contrasts was to present evi‐
dence that neuronal phenomenology drives latency structure. However, the observed effects of
state contrast on latency are potentially of physiological interest. In the eyes-open condition, prop‐
agated signals appear to flow from primary to higher-order visual cortex (Fig. 4A), in accordance
with known direction information flow in visual processing (Van Essen et al. 1992). In the eyes-
closed condition, the direction of signal propagation appears to reverse (Fig. 4B). Speculatively,
this reversal may reflect may reflect top-down influences supporting mental imagery (Stokes et al.
2009). In the button-press contrast, we theorize that changes in latency after performance of a
motor task reflect physiological processes related to learning. Although the task is simple (press‐
ing a button in response to cross-hair dimming), it is attention demanding, and subjects do show
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an improvement in reaction time (data not shown). Enhanced signaling from putamen to the left
motor region (Fig. 5D) may underlie this improvement. This result is consistent for the known role
of the putamen in motor learning (Grafton et al. 1995).

The presently observed latency differences between morning and evening (Fig. 6, C and D) spa‐
tially correspond to previously reported functional connectivity changes in medial temporal lobe
and insula (Fig. 6E; Shannon et al. 2013). The previous findings point to changes in signal correla‐
tion; the present results point to diurnal changes in directed signaling. Specifically, the entorhinal
cortex is late in the morning and early in the evening. Entorhinal cortex is the main interface be‐
tween hippocampus and neocortex (Lavenex and Amaral 2000). It is believed that the hippocam‐
pus accumulates encoded experiences during the day and that this form of memory is labile
(Axmacher et al. 2009). Memory consolidation is thought to require transfer of information from
hippocampus to neocortex, which takes place later in the day and during sleep (Axmacher et al.
2009). Accordingly, entorhinal cortex may be late in the morning because it is acting as an infor‐
mation accumulator. Conversely, entorhinal cortex is early in the evening because it is transferring
information to cortex, thereby facilitating formation of hippocampal independent memories. The
insula is relatively early in the morning and late in the evening. Interpreting this effect will require
further investigation.

Limitations. There are three principal limitations of this work. First, our method for estimating la‐
tencies (parabolic interpolation of pairwise cross-covariance estimates) undoubtedly includes
some imprecision, in part because the temporal sampling density is relatively low (see repetition
times in Table 1). However, our conclusions are based on results obtained at the group level.
These group-level latency estimates are reproducible across seven large cohorts (Fig. 2D).

Second, our findings are based on resting-state fMRI data preprocessed with global signal regres‐
sion (GSR). GSR is a controversial processing step (Fox et al. 2009; Murphy et al. 2009a); however,
in preliminary analyses, it was determined that omission of GSR greatly reduces the range of ob‐
served latencies. This is easily understandable as a consequence of retaining large quantities of
instantaneously correlated shared variance. It is likely that some fraction of the global signal is
neuronally derived (Scholvinck et al. 2010); however, it is certain that a large fraction is nonneu‐
ronal artifact attributable to head motion (Power et al. 2012, 2013; Yan et al. 2013) and variable
Pco  (Birn et al. 2006). Moreover, the artifactual component of the global signal exhibits substan‐
tial cross-subject variability (He and Liu 2012; Power et al. 2013). Therefore, GSR is a necessary
noise-reduction technique in the present analysis.

Finally, to estimate the statistical significance of the orthogonality of latency structure with respect
to RSNs, we developed a method to generate surrogate RSNs with the aim of matching the spatial
characteristics of real RSNs (see appendix). While the topology of true RSN structure was pre‐
served in the surrogates, the spatial frequency distribution was only approximately matched (
Fig. 7). Nevertheless, we are persuaded that the orthogonality relationship is statistically
significant.
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Appendix

Alternative Strategies for Computing and Analyzing Latencies We directly computed lags between
time series on the basis of lagged cross-covariance functions. Parabolic interpolation was used to
determine the lag of maximal covariance at a temporal resolution finer than the sampling density.
An alternative method based on iterating lagged correlation functions has been described (Majeed
et al. 2009, 2011), but it applies to whole images as opposed to ROI pairs. Additionally, the itera‐
tive method provides no basis for calculating what percentage of variance is attributable to la‐
tency components. The major alternative strategy for estimating lags is the phase-slope method, in
which lag is computed as the derivative with respect to frequency of complex coherence phase
(Jenkins and Watts 1968). Although the phase-slope method has been used to analyze fMRI data
(Hinkley et al. 2013; Sun et al. 2005), we chose a time domain method because the frequency do‐
main method requires differentiation, which yields noisy and unstable estimates. Moreover, the
phase-slope method requires evaluating slope over some interval under the assumption that the
slope is constant, which is not necessarily true.

Having obtained a TD matrix by any method, alternatives for extracting latency components in‐
clude the present (projection) method (Nikolic 2007; Schneider et al. 2006) and eigenvector de‐
composition. We tested both approaches and found that the principal eigenvector generally is
very similar to the result obtained by the projection method. However, the projection method
yielded much more reproducible results in the cross-subgroup analysis shown in Fig. 2.
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A substantial body of previous work has applied VAR methods to the study of directed influences
in fMRI data (Deshpande et al. 2011; Friston et al. 2003; Garg et al. 2011; Goebel et al. 2003; Smith
et al. 2012). All of these methods require the computation of k × k × τ matrices, where k is the
number of ROIs and τ is the order of the model. Even if model order is limited to 1 (Garg et al.
2011; Smith et al. 2012), VAR does not directly return lag, which is the present quantity of interest.
Dynamic causal modeling (dcm) is a VAR-based method for estimating the most likely topology of
directed graphs. However, in practice, dcm is limited to a handful of ROIs and, therefore, is un‐
suited to the present investigation. Granger causality (Deshpande et al. 2011; Goebel et al. 2003)
is theoretically less computationally demanding than dcm but, like dcm, is essentially an informa‐
tion-theoretic analysis. The scope of our analysis is much more restricted and does not rely on
models. Our results carry implications regarding the existence of propagated disturbances and di‐
rected influences in intrinsic brain activity, but we here avoid information-theoretic approaches in
favor of a more concrete and interpretable analysis based on lags.

Generation of surrogate RSNs. We generated surrogate RSNs topologically matched to real RSNs
and approximately matched in spatial frequency distribution (Fig. 7). Surrogate RSNs were gener‐
ated by treating the left hemisphere of the real RSN brain as an element of a high-dimensional
symmetric group that respects the topology of the true RSNs. We then applied randomly gener‐
ated full-rank permutations on the unihemispheric RSN brain partition. In greater detail, the 3D
MLP RSN partition was converted to a 1D vector and the ends were connected to form a ring. The
ring then was randomly rotated and the 3D to 1D transform inverted. In principle, other group
operations could have been applied, but rotation theoretically preserves spatial scale. The result‐
ing 3D map was reflected across the midsagittal line to generate hemispherically symmetric surro‐
gate RSNs. Equivalence of spatial scale was verified by 3D-Fourier analysis (Fig. 7).

Generation of “venograms.” Regression frequently is used to compute the topography within the
brain of reference signals, e.g., estimated response waveforms in task fMRI. Similarly, the topogra‐
phy of a time-shifted reference signal can be computed by regressing the derivative of the time
signal (Friston et al. 1998). This technique is easily understood as an application of a Taylor ex‐
pansion: f(t+Δt)=f(t)+Δt⋅dfdt. In the present work, f(t) is the global signal, which has already been
removed by regression during preprocessing. Thus regression of the differentiated global signal
yields the topography of the delayed global signal, i.e., large venous structures.

Estimation of TD matrix dimensionality. Experimentally observed lag structures include measure‐
ment errors. Hence, the dimensionality of our TD matrices must be estimated. To perform this es‐
timation, we ran the procedure created by T. P. Minka, which compares the eigenspectrum of the
actual data to the eigenspectrum of a random matrix and expresses the result in terms of likeli‐
hood (Minka 2001). The Minka algorithm requires a positive definite matrix. As the TD matrix is
not positive definite, the algorithm was run on the square of the TD matrix, which is mathemati‐
cally required to have the same dimensionality as the TD matrix itself (Allison et al. 2010). The
most likely dimensionality of the lag structure illustrated in Fig. 9 is 2 (Fig. 13).

Dimensionality of a TD matrix representing a single set of fixed delays. We prove that a fixed set of re‐
gionally distinct neurovascular coupling delays explains only one component of a TD matrix. The
proof depends on showing that a TD matrix representing a single set of lagged relationships has

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F7/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F9/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F13/
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only a single eigenvector.

Let the fixed set of regional delays be represented as the column vector, (d1d2d3⋮dn), where n is
the number of regions. Suppose that T is the anti-symmetric matrix generated by this set of delays.
Thus

T=[0 . . . τ1,n⋮⋱⋮−τ1,n⋯0]=[0 . . . dn−d1⋮⋱⋮d1−dn . . . 0] (A1)(A1)

Previous work has shown that, for a nonzero anti-symmetric matrix A ∈ ℝ , rank(A) ≤ 2k if and
only if there exists x ,  . . . , x , y ,  . . . y  ∈ ℝ  such that A=∑i=1k(xiyiT−yixiT) (Allison et al. 2010).
Hence, if we construct x,y such that T = xy  − yx , then k = 1, and rank(T) ≤ 2. Since the rank of any
anti-symmetric matrix over ℝ must be even (Allison et al. 2010), rank(T) = 2, as T is nonzero. The
eigenvalues of a real, anti-symmetric matrix come in conjugate imaginary pairs (Allison et al.
2010). Therefore, T has only two conjugate imaginary eigenvalues, ±ci, corresponding to a single
eigenvector, ±v, except for sign. Note that the dimensionality of T is 1 even though its rank is 2.
This is because for all real, anti-symmetric matrices, the rank is 2 times the dimensionality, as ei‐
genvalues come in conjugate imaginary pairs (see above). Thus, once we construct x,y such that T
= xy  − yx , we have proven that a TD matrix representing a single set of lagged relationships has
only a single eigenvector.

Now, it remains to construct x,y such that T = xy  − yx . Let x ∈ ℝ  such that x  = 1 for all x and y  =
d  for j = i, . . . , n. Then

n×n

1 k 1 1
n

T T

T T

T T n
i j

j
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completing the construction required for the proof.

An alternative formulation applies the principle that the eigenvalues of a linear system satisfy the
characteristic equation of its matrix. We illustrate this principle in a simple case of a 3 × 3 time de‐
lay matrix. Let (d1d2d3) be the onset times for the system. Then

T=[0d1−d2d3−d1d2−d10d2−d3d3−d1d3−d20]. (A3)(A3)

The characteristic equation is
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Since ∑ (d −d )  is a sum of squares, it must be positive. Therefore Eq. A4 has two conjugate
imaginary solutions corresponding to a single eigenvector, as claimed.
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Figures and Tables

Fig. 1.

Calculation of pairwise time series lag using cross-covariance and parabolic interpolation. Top: 195 s of 2 sampled time se‐
ries extracted from 2 loci in the brain. Bottom left: the corresponding lagged cross-covariance function, computed over a full

run (∼300 s) (Eq. 2). The lagged cross-covariance is defined over the range ±L, where L is the run duration. The range of the
plotted values is restricted to ±12 s, which is equivalent to ±4 frames (red markers) when the repetition time is 3 s. The lag
between the time series is the value at which the [absolute value of the] cross-covariance function is maximal. This ex‐

tremum can be determined at a resolution finer than the temporal sampling density (1 frame every 3 s) by performing para‐
bolic interpolation (green line, bottom right) through the computed values (red markers). This extremum (arrow, yellow
marker) defines both the lag between time series i and j (τ ; Eq. 4) and the corresponding amplitude (a ; Eq. 5).i,j i,j
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Table 1.

Characteristics of analyzed data sets

Data Set

1 2 3 4

No. of subjects 692 (305 M + 387
F)

10 (4 M + 6 F) 17 (8 M + 9 F) 24 (15 M + 9 F)

Age, yr 21.4 ± 2.4 (SD) 23.3 ± 3 (SD) 23.1 ± 2.4 (SD) 25.9 ± 2.3 (SD)

Scanner Siemens Tim Trio Siemens Allegra Siemens Allegra Siemens Tim Trio

Acquisition voxel
size

(3 mm) (4 mm) (4 mm) (4 mm)

Flip angle, ° 85 90 90 90

Repetition time, s 3.00 3.03 2.16 2.08

No. of frames 124 × 2 runs 110 × 6 runs 194 × 2 runs 194 × 2 runs

Citation Yeo et al. (2011) Fox et al. (2005b) Fox et al. (2007) Shannon et al.
(2012)

Experimental
question

Replicability Eyes open vs. eyes
closed

Before vs. after motor
task

Morning vs. evening

3 3 3 3
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Fig. 2.

Results obtained in data set 1. The 692 subjects were randomly divided into 7 equally sized subgroups of ∼99 subjects
each. A: latency projection of the time-delay (TD) result obtained in the first subgroup illustrated in voxel-space. Lag is
measured in seconds. B: latency projection of the amplitude-weighted time-delay (AWTD) result corresponding to the TD

result shown in A. Because the blood oxygen level-dependent (BOLD) signal magnitude depends on multiple fMRI sequence
parameters, the unit of amplitude-weighted lag is arbitrary. C: surface representation of the volumetric result shown in A.
Arrows point to specific regions mentioned in discussion: posterior precuneus cortex (PCC), ventromedial prefrontal cor‐

tex (VMPFC), dorsal anterior cingulate cortex (dACC), anterior insula (AI), posterior parietal cortex (PPC), and dorsolateral
prefrontal cortex (DLPFC). D: spatial correlation between all TD (first 7 rows/columns) and AWTD (last 7 rows/columns)
latency projections calculated in the 7 subgroups.
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Fig. 3.

A: latency process amplitude (LPA) map illustrated in voxel-space obtained in the first subgroup of data set 1 (same data as

in Fig. 2, A–C). The scale is in units of BOLD amplitude. See Eq. 8 for derivation. B: surface representation of the volumetric
result shown in A. C: spatial correlation between all amplitude maps calculated in the 7 subgroups of data set 1.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F2/
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Fig. 4.

Latency results obtained in data set 2. A: eyes open (EO). B: eyes closed (EC). C: EO minus EC. D: voxels with a statistically
significant EO vs. EC latency effect. E: EO minus EC LPA difference image. Color indicates statistically significant voxels.
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Fig. 5.

Latency results obtained in data set 3. A: before button-press task. B: after button-press task. C: after minus before. D: voxels
with a statistically significant recent task performance latency effect. E: after minus before LPA difference image. Color indi‐

cates statistically significant voxels.
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Fig. 6.

Latency results obtained in data set 4. A: morning latency map. B: evening latency map. C: evening minus morning change in

latency. Warm hues indicate increased lateness in the evening. Cool hues indicate increased earliness in the evening. D: sta‐
tistically significant latency differences are seen in entorhinal and insular cortex. E: previously reported (Shannon et al.
2013) diurnal change in functional connectivity. Magenta indicates the 2 regions of interest, right and left entorhinal cortex,
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exhibiting the greatest diurnal change in functional connectivity with the rest of the brain (circled in central slices in A–E).
Presently reported diurnal changes in latency (A–D) correspond to previously published functional connectivity changes in

entorhinal cortex (E).

Fig. 7.

Real and surrogate resting-state networks (RSNs). RSN labels and color codes are presented at bottom left. To test the statis‐
tical significance of the latency-RSN relationship, we created surrogate RSNs matched in spatial frequency to real RSNs. The
real RSNs were defined as the group-level winner-take-all result in Hacker et al. (2013) (referred to here as “MLP RSNs”).

Surrogate RSNs (n = 1,000) were generated by applying symmetric group operations to the real RSNs (see appendix). One
typical example of surrogate RSNs is illustrated adjacent to the real RSNs. Spatial frequency domain representations (3D
Fourier transforms of RSNs and surrogate RSNs) are at top right. The spatial frequency domain results are averaged over all

real RSNs and over all surrogate RSNs, respectively, omitting the cerebrospinal fluid (CSF) component. Only the f  = 0
planes of the 3D spatial frequency domain representations are shown. The graph (bottom right) shows relative spectral
power (in dB) read out along the diagonal blue traces in the frequency domain representations. The plots are symmetric

about the Nyquist folding frequency = 0.53 mm, which reflects the spatial sampling density (3-mm cubic voxels). Critically,
the spatial frequency content of the surrogate RSNs is well matched to the real RSNs.

z
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Fig. 8.

Histogram of summed squared mean latency values in surrogate RSNs. One thousand surrogate RSN partitions (e.g., Fig. 7)
were generated. The latency mean was evaluated for each surrogate RSN. On the assumption that mean RSN latencies are

normally distributed about zero, the sum of squares of these values theoretically is distributed as χ (7). The light blue trace
represents the theoretical gamma probability density function fit to the simulations (blue histogram). The vertical pink line
represents the summed squared latency values in the real RSNs (0.006 s ). A squared sum value of 0.006 s  corresponds to

a root mean square value of 0.03 s, as reported in the text. The surrogate data indicate that the probability of this outcome
occurring by chance is P < 0.0096.

2

2 2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F7/
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Fig. 9.

Relationship of latency to RSNs. Figure shows a TD matrix with regions of interest (ROIs) ordered by RSN membership (see

Fig. 7 for abbreviations). Within each RSN, the ROIs are further ordered by latency. Note wide range of latencies within
RSNs (diagonal blocks, each necessarily anti-symmetric) and anti-symmetric features across RSNs (off-diagonal blocks).
Note also absence of organization in CSF blocks. Blocks referred to in the main text are outlined in white. The diagonal

blocks in the TD matrix illustrate that each network has early, middle, and late components. Moreover, the off-diagonal
blocks have early, middle, and late components. Therefore, no network leads or follows any other network. Rather, lags are
equivalently distributed within and across RSNs.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F7/
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Fig. 10.

AWTD matrix corresponding to Fig. 9. Blocks referred to in the main text are outlined in white.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F9/
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Fig. 11.

Comparison of cerebral blood flow (CBF) vs. TD latency projection. A: CBF map obtained in a group of 33 normal young
adults. B: TD latency projection; same data as Fig. 2, A–C. C: scatterplot showing the relationship between CBF and the la‐
tency projection. Each dot represents 1 ROI. To test whether the reproducibility of latency structure (Fig. 2D) is attributable

to CBF, we computed the mean cross-group correlation for the 7 cohorts in data set 1, before and after regressing out the ef‐
fects of CBF. The mean cross-group correlation was r = 0.898 in both cases. This result demonstrates that the effect of CBF
on measured latency, if present, is negligible.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F2/
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Fig. 12.

Venous contribution to latency structure. A: venogram. B: TD latency projection for comparison. Our gray matter masking
procedure (see imaging methods) excludes many of the voxels that correspond to venous structures, but some overlap is

apparent. C: TD latency projection with venous structures masked out.
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Fig. 13.

Estimation of TD matrix model order. The TD matrix intrinsic dimensionality likelihood was calculated (Minka 2001) with
the Bayesian information criterion (BIC) in the 7 groups corresponding to Fig. 2. In each group, the dimensionality of high‐

est likelihood is 2. This result implies the existence of 2 transitive systems of lags within the TD matrix. Regionally depen‐
dent neurovascular coupling can explain only 1 of these transitive systems of lags. Therefore, hemodynamic delays, even if
they are substantial, cannot account for the entirety of latency structure.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097876/figure/F2/

