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a b s t r a c t 

Patterns of low frequency brain-wide activity have drawn attention across multiple disciplines in neuroscience. Brain-wide activity patterns are often described 

through correlations, which capture concurrent increases and decreases in neural activity. More recently, several groups have described reproducible temporal 

sequences across the brain, illustrating precise long-distance control over the timing of low frequency activity. Features of correlation and temporal organization 

both point to a systems-level structure of brain activity consisting of large-scale networks and their mutual interactions. Yet a unified view for understanding large 

networks and their interactions remains elusive. Here, we propose a framework for computing probabilistic flow in brain-wide activity. We demonstrate how flow 

probabilities are modulated across rest and task states and show that the probabilistic perspective captures both intra- and inter-network dynamics. Finally, we 

suggest that a probabilistic framework may prove fruitful in characterizing low frequency brain-wide activity in health and disease. 
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. Introduction 

Findings across fields in neuroscience point to the importance of

ow frequency ( < 10 Hz) brain-wide activity as means for understand-

ng mammalian brain function. In human neuroimaging, from the ear-

iest days of PET, researchers quickly realized that even simple tasks

ngaged metabolic changes in large parts of the brain ( Raichle et al.,

001 ; Raichle and Mintun, 2006 ). Recent work in mice has also shown

hat broad behavioral conditions such as thirst and decision state not

nly modulate brain-wide activity, but does so at the single neuron scale

cross the brain ( Allen et al., 2019 , 2017 ). 

Low frequency spontaneous, or ‘resting-state ”, neural activity is also

oordinated across the brain in the absence of an explicit task. Such co-

rdination is often measured using correlations. A large body of work

sing voltage sensitive dyes in cats ( Kenet et al., 2003 ), calcium imag-

ng and fMRI in mice ( Ma et al., 2016 ; Stafford et al., 2014 ), and

MRI and electrocorticography in primates including humans ( Fox and

aichle, 2007 ; Hacker et al., 2017 ; Vincent et al., 2007 ) has demon-

trated spontaneous correlations across brain areas that are recruited in

asks, such as the visual system, the somatomotor system, and higher or-

er networks like control networks ( Vincent et al., 2008 ) and the default

ode network ( Raichle et al., 2001 ). Indeed, the magnitudes of pairwise

orrelations in low frequency activity are often used to parcel the brain

nto approximately 7 canonical networks ( Hacker et al., 2013 ; Yeo et al.,

011 ). Taken further, correlation information can inform defining even

maller brain areas, such as recent report suggesting 180 areas in human

ortex ( Glasser et al., 2016 ). 

In contrast to the parsing of the brain into ever finer balkanized ar-

as, we and others have recently found propagation patterns in which

ow frequency activity travels both within and between large brain areas
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nd networks. We first demonstrated the existence of brain-wide tempo-

al sequences in human fMRI ( Mitra et al., 2014 ). While the high dimen-

ional temporal delay pattern of fMRI data ( Mitra et al., 2015 ) suggested

hat neurophysiology, as opposed to vascular delays ( Handwerker et al.,

004 ), were responsible for the temporal structure of fMRI, fMRI evi-

ence alone could not definitively delineate between these possibilities.

e therefore further pursued concurrent optical imaging of blood flow

nd calcium signals in the mouse, alongside laminar electrophysiology,

o demonstrate that the temporal delay structure of the blood oxygen sig-

al precisely mirrors the temporal delay structure of both low frequency

alcium signals and low frequency local field potentials ( Mitra et al.,

018 ). We also demonstrated using human electrocorticography that

ow frequency temporal delay structure in human local field poten-

ials agrees with temporal delays found in human fMRI ( Mitra et al.,

016 ). Finally, recent work combining fMRI and optogenetics demon-

trates that stimulated pulses in the brain propagate across networks at

 systems-scale and are captured accurately using fMRI ( Lee et al., 2010 ;

eong et al., 2019 ). 

In sum, beyond establishing agreement between temporal structure

n blood oxygen signals and physiology, mounting evidence suggests

hat low frequency activity propagates both within and across tradi-

ionally defined networks ( Leong et al., 2019 ; Mitra et al., 2018 , 2016 ).

hus, the temporal structure of low frequency activity suggests that

ather than serving to delineate and divide brain regions, this activity

nstead serves as a means of inter-areal communication and integration

 Mitra and Raichle, 2018 ; Raichle et al., 2019 ). 

On the basis of these findings, the question naturally arises, how can

he same signal produce signatures of brain-wide integration as well as

nter-areal segregation? In past work, we have shown that the answer

ies, in part, in distinct features of intra- vs. inter-network propagation of
ust 2020 
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Fig. 1. Toy examples to motivate the probabilistic flow metric. (A) A system in 

which two nodes, 𝛼 and 𝛽 are both sending signals (modeled as aperiodic fMRI 

signals as in ( Mitra et al., 2015 )) to a seed node, S , with a temporal delay of 𝜏1 . 

However, the node 𝛽 is three times more likely to send a signal to S than is the 

node 𝛼. Therefore, the correlation r 3 between 𝛽 and S is three times greater than 

correlation r 1 between 𝛼 and S . The pairwise lagged correlation curves between 

𝛽 and S (blue) as well as 𝛼 and S (red) are shown on the right side of panel (A). 

As is evident, the peak of the two lagged correlation curves both occur at 𝜏1 . 

(B) A three node system in which activity travels first from 𝛼′ to 𝛽′ , then from 

𝛽′ to a seed region S . The temporal delay 𝜏2 between 𝛼′ and S is twice that of 

the temporal delay 𝜏1 between 𝛽′ and S . Moreover, assuming that there’s some 

change in the waveform of the signal during this sequential transmission, the 

correlation r 2 between 𝛼′ and S is ten percent less than the correlation r 3 between 

𝛽′ and S . (C) A vector space in which the x-axis is correlation and the y-axis is 

temporal delay. If we plot the vectors from (A) corresponding to the correlation 

and time delay between 𝛼 and S (red) and 𝛽 and S (blue), the magnitude of the 

blue vector is greater than the magnitude of the red vector, correctly capturing 

that 𝛽 ismore likely to send signal to S than is 𝛼. If we plot the vectors from 

(B) corresponding to the correlation and time delay between 𝛼′ and S (green) 

and 𝛽′ and S (blue). The 𝛼′ vector has a higher magnitude than the 𝛽′ vector (by 

approximately fifteen percent in this example), reflecting the fact that it is more 

likely to be the original source of activity flowing to S . (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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ow frequency activity ( Mitra et al., 2015 ). Here, we build on this work

y proposing a probabilistic view of propagated low frequency activity

uilt on both pairwise correlations and pairwise temporal delays be-

ween signals. In this probabilistic framework, we assume that all fMRI

ctivity reflects either sending or receiving signals in the brain. Thus,

or a given voxel-wise time series, we compute the probability that each

ther voxel in the brain was the original source of its activity, and the

robability that each other voxel in the brain is the ultimate destination

f its activity. 

We demonstrate in fMRI data that this probabilistic perspective of-

ers a view both into how low-frequency activity moves between net-

orks for cross-areal communication and how activity can be biased to

emain within certain areas which define networks. Finally, we suggest

hat subtle alterations in spontaneous propagation probabilities may un-

erlie both physiologic and pathophysiologic aspects of brain function. 

. Theory 

The correlation and temporal delay between a pair of time series can

e independent. In other words, we can create a pair of time series with

 fixed peak correlation of r at an arbitrary temporal delay 𝜏 i (where 𝜏 i 

ould be 0.5 s, 1 s, 10 s, etc.). Likewise, we can fix the peak correlation

o occur at some temporal delay 𝜏 at an arbitrary value of r i . As a result,

n analysis of data that excludes either correlation or temporal delay

nformation can overlook important dynamics of a system. 

Fig. 1 illustrates how both correlation and temporal delay can be es-

ential for characterizing types of dynamical systems. Panel (A) shows a
ituation in which two nodes, 𝛼 and 𝛽 are both sending signals (modeled

s aperiodic fMRI signals as in ( Mitra et al., 2015 )) to a seed node, S ,

ith a temporal delay of 𝜏1 . However, the node 𝛽 is three times more

ikely to send a signal to S than is the node 𝛼. Therefore, the correlation

 3 between 𝛽 and S is three times greater than correlation r 1 between

and S . The pairwise lagged correlation curves between 𝛽 and S (blue)

s well as 𝛼 and S (red) are shown on the right side of panel (A). As is

vident, the peak of the two lagged correlation curves both occur at 𝜏1 .

ence, an analysis of temporal delay alone would incorrectly suggest

oth areas signal to S equally. 

Now consider a vector space (Panel (C)) in which the x-axis is corre-

ation and the y-axis is temporal delay. If we plot the vectors correspond-

ng to the correlation and time delay between 𝛼 and S (red) and 𝛽 and S

blue), the magnitude of the blue vector is greater than the magnitude

f the red vector, correctly capturing that 𝛽 is more likely to send signal

o S than is 𝛼. In this toy example, the magnitude of 𝛽 is approximately

.5 that of 𝛼; thus the metric is does not perfectly capture the underly-

ng probabilities, but it does offer an estimate that is significantly more

ccurate than time delay alone. 

Another feature of this vector space is that it distinguishes between

roximal and terminal sources and sinks in a system. As an example,

onsider Panel (B) in Fig. 1 . In this toy example, activity travels first

rom 𝛼′ to 𝛽′ , then from 𝛽′ to a seed region S . The temporal delay 𝜏2 

etween 𝛼′ and S is twice that of the temporal delay 𝜏1 between 𝛽′ and

 . Moreover, assuming that there’s some change in the waveform of the

ignal during this sequential transmission, the correlation r 2 between

′ and S is ten percent less than the correlation r 3 between 𝛽′ and S . As

efore, we plot the vectors corresponding to the correlation and time

elay between 𝛼′ and S (green) and 𝛽′ and S (blue). The 𝛼′ vector has a

igher magnitude than the 𝛽′ vector (by approximately fifteen percent in

his example), reflecting the fact that it is more likely to be the original

ource of activity flowing to S . 

Taken together, these examples illustrate how a vector space of cor-

elations and temporal delays can be used to compute the probability

f a particular region receiving signals from other nodes in the system.

pecifically, the present framework computes whether a particular voxel

as the original source or ultimate destination of a seed region’s activ-

ty. As such, long temporal delays are weighted highly, as the combina-

ion of high correlation and long temporal delay is the characteristic of

n area that was the ultimate source or destination of a voxel time se-

ies. Before we apply this approach to real data, there are five technical

actors to consider. 

First, in order for the magnitude of vectors in this space to equiva-

ently reflect correlation and temporal delay information, correlations

nd temporal delays must be on the same scale. For example, if tem-

oral delays were on the order of 10 ′ s of seconds whereas correlations

ere on a scale of − 1 to 1, then the magnitude of vectors in this space

ould primarily reflect time delays. We thus normalized the variance of

orrelations and time delays to place them on the same scale. 

Second, correlations can be positive or negative. In the context of

eural activity, positive correlations may represent spread of excitatory

ctivity, whereas negative correlations may represent spread of inhi-

ition. While teasing apart positive and negative correlations may be

ritical in some applications, in the present treatment we will consider

nly the magnitude of correlations, potentially grouping excitatory and

nhibitory spread of activity. 

Third, temporal delays can be positive or negative, reflecting areas

hat either send or receive signals from the reference point. In the anal-

ses to follow, we will maintain sender vs. receiver information by at-

aching a sign to the magnitudes of vectors (negative signs for senders,

ositive signs for receivers with respect to the reference node). 

Fourth, in order for the vector magnitude metric to represent a prob-

bility, the cumulative sum of all vector magnitudes from a reference

ode should equal one. To accomplish this, we will assume on the basis

f prior work that there is no voxel in the brain that is either a “uni-

ersal sender ” or a “universal receiver ” ( Mitra et al., 2014 ). Instead, we
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Fig. 2. Left hemisphere motor hand area (pink arrow and dots) referenced tem- 

poral lag, correlation, and probabilistic flow maps. The far left column, “Rest 

lags ”, demonstrates temporal delays in units of seconds with respect to the ref- 

erence region in 3 slices in the brain, arranged from dorsal (top) to ventral 

(bottom). Negative lags (cool hues) represent regions which send fMRI signal to 

the region of interest, whereas positive lags (warm hues) represent areas which 

receive signal from the region of interest. The second column from the left, “Rest 

corr ”, illustrates the peak correlation between the region of interest and every 

other voxel in the brain. Cool hues represent negative correlations and warm 

hues represent positive correlations. The third column from the left, “Rest prob ”, 

depicts probabilistic flow about the region of interest. Cool hues represent ar- 

eas that send signals to the region of interest whereas the warm hues represent 

areas that receive signals from the motor region of interest. The sum of all the 

cool hues equals one, as does the sum of all the warm hues. Areas with no color- 

ing represent zero probability for sending and receiving signals from the motor 

seed. The far right column depicts probabilistic flow about the region of inter- 

est during a visual-motor task. Orange arrows highlight ventral visual areas; 

purple and green arrows highlight primary and secondary somatosensory areas, 

respectively. Temporal delay and correlation analysis of the visual-motor task 

have been previously published ( Fox et al., 2007 ; Mitra et al., 2014 ). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Table 1 

Demographic and fMRI scanning parameters of analyzed data sets. 

Dataset 1 2 

Number of subjects 17 (9 F) 1376 (785 F) 

Age in years 23.1 ± 2.4 (S.D.) 21.4 ± 2.1 (S.D.) 

Scanner Siemens Allegra Siemens Tim Trio 

Acquisition voxel size (4 mm) 3 (3 mm) 3 

Flip Angle 90° 85°

Repetition Time (s) 2.16 3.00 

Number of frames 194 × 2 runs rest, 

194 × 3 runs task 

124 × 2 runs 

Citation Fox et al., 2007 Buckner et al., 2014 

Experimental Question Rest vs. task Resting state 
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ill assume that every voxel in the brain receives signal from at least

ne other place in the brain, and also sends signal to at least one other

lace in the brain. Moreover, as suggested by the optogenetic-fMRI lit-

rature, we will assume that all activity in human fMRI reflects signal

ropagation through the brain ( Lee et al., 2010 ; Leong et al., 2019 ). On

his basis, in this model of probabilistic flow we will normalize the sum

f all incoming or “sender ” signal probabilities to one and normalize the

um of all outgoing or “receiver ” signal probabilities to one. Therefore

he vector magnitudes of incoming and outgoing signals from each voxel

atisfy the properties of a true probability. 

Fifth, and finally, in order to compute a time delay between two

ignals, there must be some amount of correlation. If, for instance, the

orrelation between two signals were zero, then there would not ex-

st a peak correlation to define a time delay. Hence we only compute

robabilities for pairwise interactions with a certain minimum thresh-

ld correlation (see Methods). 

. Results 

Fig. 2 demonstrates the application of a probabilistic framework to

MRI data (dataset 1 in Table 1 ). The analyses are performed with re-
pect to a reference node (or seed) in the left motor cortex hand area

pink arrow and dots in Fig. 2 ). 

The far left column, “Rest lags ”, demonstrates temporal delays in

nits of seconds with respect to spontaneous fMRI activity in the left

otor cortex hand area in 3 slices in the brain, arranged from dorsal

top) to ventral (bottom). Negative lags (cool hues) represent regions

hich send fMRI signal to the region of interest, whereas positive lags

warm hues) represent areas which receive signal from the region of in-

erest. In line with our previous findings ( Mitra et al., 2015 ), pre-motor

reas, medial somatosensory areas, and secondary somatomotor cortex

re among the areas which send fMRI signals to the region of inter-

st. Similarly, ventral visual cortex and lateral somatomotor cortices are

mong the areas which receive fMRI signals from the region of interest.

The second column from the left, “Rest corr ”, illustrates the peak

orrelation between the motor region of interest and every other voxel

n the brain. Correlation is reported in units of Pearson r, with cool hues

epresenting negative correlations and warm hues representing positive

orrelations. In line with extensive prior literature, the left hemispheric

otor reference point is correlated with the right somatomotor cortex

s well as parts of visual cortex. 

The third column from the left, “Rest prob ”, depicts probabilistic

ow computed using the correlation-latency vector space as described

n the theory section. The cool hues represent areas that send signals

o the region of interest whereas the warm hues represent areas that

eceive signals from the motor region of interest. The sum of all the

ool hues equals one, as does the sum of all the warm hues. Several

spects of the probabilistic flow map are similar to the lag map on the

ar left, such as the fact that pre-motor areas (purple arrows) are a high

robability sender of activity to the region of interest. However, there

re also differences. For example, ventral visual areas (orange arrows)

ave a long temporal delay with respect to the region of interest (far

eft column in Fig. 2 ), but only a modest probability of receiving signal

rom the motor region of interest (third column in Fig. 2 ). Moreover,

here are several areas with green hues in the lag map, which could

eflect either synchrony with zero-temporal delay or regions without

ell-defined temporal relationships with the seed (and hence averaging

o zero). The majority of these regions have no coloring in the probabil-

ty map, indicating near zero probability of flow of activity with the seed

egion. 

Finally, in the far right column in Fig. 2 , we also computed in this

ame group of subjects a probabilistic flow map during right handed

utton push in response to a visual cue (see Methods). Notice that the

ow map is markedly altered from the resting state. During this sim-

le task, the left motor hand region of interest is now predominantly

eceiving signals from medial somatosensory cortex; the premotor and

econdary somatosensory cortices has negligible probability of sending

ignals to the region of interest (purple and green arrows, respectively).

n contrast, the probability of sending signals to the ventral visual sys-

em is markedly increased (orange arrows), as well as parts of the dorsal

isual system. Note that this is contrary to what might be expected in

 feed-forward view of a simple visual-motor task, as visual cortex be-
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Fig. 3. Whole brain analysis of probabilistic 

flow in resting state fMRI. (A) A 2-dimensional 

matrix depicting pairwise voxel relationships 

in fMRI data. Each point in the matrix illus- 

trates the pairwise probability of fMRI signal 

flow between two voxels in the brain. Cool 

hues represent “sending ” in the pairwise rela- 

tionship and warm hues represent “receiving ”

in the pairwise relationship. The matrix was 

block sorted by network affiliation (see Meth- 

ods): dorsal attention network (DAN), ventral 

attention network (VAN), somatomotor net- 

work (SMN), visual network (VIS), frontopari- 

etal control network (FPC), language network (LAN), and default mode network (DMN). In addition, each diagonal block was further sorted into “high probability 

senders ” and “high probability receivers ”, yielding the blue-to-red progression in each diagonal block. (B) Mean absolute value probabilistic flow values within each 

intra- and inter-network block. The purpose of computing means within each intra- and inter-network block is to compare the relative probability of signaling within 

each block. Warm colors indicate relatively high signaling probabilities, whereas low blocks represent relatively low signaling probabilities. Warm colors along the 

diagonal indicate that, generally, intra-network flow has higher probability than inter-network flow. However, high probabilities are also found in several inter- 

network pairs, most notably between the DMN and DAN. Asterisks designate blocks where the mean absolute probability is significantly higher than expected in the 

absence of structured temporal delays (see Methods). (C) Average inter-network flow from each network. The bar graph illustrates the mean value of inter-network 

flow probabilities depicted in panel (B) for each network with confidence intervals computed using bootstrapping representing 2.5 standard deviations (see Methods). 

The gray line indicates the mean probabilistic flow value computed over all inter-network pairs. Values above the gray line indicate greater inter-network signal 

flow than average, and vice versa. Significance testing (see Methods) reveals that the DMN participates in more inter-network signal flow than average, whereas the 

SMN participates in less signal flow than average. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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omes more likely to receive as opposed to send signals with respect to

he left motor hand area. 

Fig. 2 illustrates the concept of probabilistic flow with respect to a

eference node or seed region of interest. Fig. 3 demonstrates a whole-

rain analysis of spontaneous fMRI activity in a group of 1376 subjects

see Table 1 ). Fig. 3 A depicts a 2-dimensional matrix of pairwise voxel

elationships in fMRI data; each point in the matrix illustrates the pair-

ise probability of fMRI signal flow between two voxels in the brain. As

n Fig. 2 , the cool hues represent “sending ” in the pairwise relationship

nd warm hues represent “receiving ” in the pairwise relationship. The

atrix has further been sorted into blocks by known network affiliation

( Hacker et al., 2013 ), see Fig. 3 caption and Methods). In addition,

ach diagonal block was further sorted into “high probability senders ”

nd “high probability receivers ”, yielding the blue-to-red progression in

ach diagonal block. 

Note that the highest saturation in colors occurs along the diagonal

locks. The implication is that the highest probability of spontaneous

MRI signal flow occurs within large brain networks. However, there is

till significant probability of cross-network signal flow. 

To further analyze probabilistic signal flow within and across net-

orks, we next computed the average absolute value of probability

ow values inside each intra-network and inter-network block. Re-

ardless of sign, higher absolute probability flow value reflect, in this

odel, higher chances of signal flow between a set of voxels. The re-

ult, shown in Fig. 3 B, shows that in general intra-network relationships

ave higher probability flow values than inter-network relationships.

owever, there are several inter-network pairs with comparatively high

robability flow averages, including the DMN:DAN relationship and

he VIS:FPC relationship. To assess whether the values in Fig. 3 B are

ignificant, we simulated fMRI time series with the same correlation

tructure as real data (based on the group average) but without any

onstraint on the temporal delay structure (see Methods). Blocks with

hite asterisks in Fig. 3 B designate blocks with statistically significant

levations in probability flow metrics compared to a null model that

oes not constrain temporal delay information ( p < 0.05 corrected, see

ethods). 

Focusing specifically on inter-network signal flow, we also explored

hether some networks participate more or less in inter-network signal

ow by computing the mean inter-network flow through each network

n Fig. 3 B, as illustrated in Fig. 3 C. We find that compared to the mean

ver all networks, the DMN has significantly higher flow with other
etworks, whereas the SMN has significantly lower flow with other net-

orks ( p < 0.05 corrected, see Methods). 

Finally, we explored the topology of pairwise voxel relationships

n the probabilistic flow metric. Given the high dimensionality of the

ata, we applied t-distributed stochastic neighbor embedding (t-sne; see

ethods) to produce a 2-dimensional visualization of high dimensional

oxel relationships. Fig. 4 A illustrates the results of applying t-sne to

he probability flow metric matrix shown in Fig. 3 A. The t-sne result in

ig. 4 A shows clear clustering of networks along three principle axes:

he default mode network, the visual network, and the somatosensory

etwork, in line with the 3 principal gradients of brain activity recently

eported by Margulies and colleagues ( Margulies et al., 2016 ). Indeed,

s Margulies and colleagues reported using the gradient method, the

emaining networks of the brain in Fig. 4 A are circumscribed within

he triangular organization between the somatomotor, visual, and de-

ault mode networks. To determine whether the result in Fig. 4 A was

ound by chance, we produced surrogate resting state networks with

patial frequency content matched to the real resting state networks (as

n ( Mitra et al., 2014 ), see Methods). We produced 1000 null simulations

f surrogate resting state networks and none produced a clustering with

orrelation r > 0.01 with the present results. 

While Fig. 4 A illustrates that the probabilistic flow framework re-

apitulates the functional topology reported by ( Margulies et al., 2016 ),

t is possible that other metrics, such as correlation (typical functional

onnectivity), temporal delays, or even physical distance produce the

ame topology. These possibilities are explored in Figs. 4 B-D. Fig. 4 B il-

ustrates t-sne applied to pairwise correlations, and shows that although

ndividual networks are well clustered, the inter-network relationships

mbedded in Fig. 4 A are not present. Instead of the triangular organiza-

ion about three axes, the t-sne analysis of pairwise correlations reveals

 topology with the networks distributed approximately equi-distantly

long a circle. Fig. 4 C illustrates t-sne applied to temporal delays and

eveals a clustering toplogy that does capture elements of intra-network

elationships including the triangular organization about somatomotor,

isual, and default mode networks; however, the networks themselves

re not coherently identified, with the somatomotor, dorsal attention,

nd ventral attention networks split into multiple clusters. Finally, t-sne

pplied to physical distance in Fig. 4 D fails to capture both inter- and

ntra-network relationships. 

Therefore, the probabilistic flow metric implemented in the present

esting state fMRI analyses captures both inter- and intra-network com-
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Fig. 4. Clustering of voxel-pair probabilistic flow, correlation, temporal delay, 

and physical distance matrices. The high dimensional cluster structure is here 

visualized in two dimensions by applying t-distributed stochastic neighbor em- 

bedding (t-sne; see Methods). (A) Clustering structure of the probabilistic flow 

metric. Note that the networks clearly segregate from each other and align along 

three primary points: the default mode network (red), the somatosensory net- 

work (blue), and the visual network (green). (B) Clustering structure of the cor- 

relation metric. Note that networks are well clustered along a circular shape 

in state-space but no clear inter-network features are identified. (C) Clustering 

structure of the temporal delay metric. Note that although elements of inter- 

network relationships including the three-point organization around the DMN, 

SMN, and VIS is present, several networks are not well-clustered, including the 

DAN and SMN. (D) Clustering structure of physical distance metric. Neither 

intra-network nor inter-network relationships are well captured. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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unication in a fashion that contains both network segregating and net-

ork integrating properties. Importantly, the topology of these relation-

hips is not well defined by alternative metrics including correlation,

emporal delays, and physical distance. 

. Discussion 

In summary, we propose a probabilistic framework for analyzing

igh dimensional neural time series. The probabilistic flow metric in-

roduced here estimates the original source and terminal destination of

ctivity by computing normed magnitudes in a vector space defined by

orrelations and temporal delays. By incorporating both correlation and

emporal delay information, the probabilistic flow metric successfully

haracterizes dynamics that are missed by both sole application of tem-

oral delays or correlations, as shown in Fig. 1 . Moreover, in a simple

isual-motor task, we demonstrate that task-induced flow of fMRI ac-

ivity represents a modulation of spontaneous activity ( Fig. 2 ). We fur-

her performed series of analyses exploring the whole-brain structure of

airwise probabilistic flow relationships in spontaneous fMRI data. We

nd that intra-network flow has higher probability than inter-network

ow, but that several inter-network relationships are privileged in the

rain, including signaling between the dorsal attention network and

he default mode network ( Fig. 3 ). Finally, we applied t-sne to explore

he topology of pairwise probabilistic flow relationships in spontaneous

MRI data to find signaling organized around three networks: the default

ode network, the visual network, and the somatomotor network, in

ine with recent gradient-based findings from Margulies and colleagues

 Margulies et al., 2016 ). Critically, similar t-sne analysis pairwise cor-
elations, temporal delays, and physical distance all fail to capture this

rganization in spontaneous fMRI data ( Fig. 4 ). 

.1. Inter-network relationships and gradients in brain function 

Correlations and temporal delays offer distinct information about the

rganization of brain-wide neural activity. Conventionally, correlation

nformation has been used to parse the brain into networks and regions,

hereas latency information has been used to demonstrate flow of activ-

ty across areas. Here, we describe a probabilistic flow metric based on

orrelation and latency information as a means of estimating the prob-

bility that a given node is sending or receiving signals to other nodes

n the brain. By construction, we chose to focus on terminal sources and

inks, that is, the originating and final nodes along signal sequences (see

heory). 

Applying this probabilistic flow framework to fMRI data, our re-

ults demonstrate that fMRI signals travel both within and across large

rain networks, but with different probabilities. Figs. 3 A-B show that

hile activity is most likely to travel within previously defined resting

tate networks, there is also a significant probability of signaling be-

ween networks. Two networks stand out in this analysis: the default

ode network, which engages in more cross-network signaling than

he average across networks, and the somatomotor network, which en-

ages is less cross-network signaling than the average across networks

 Fig. 3 C). The results in Fig. 3 are consistent with prior work show-

ng that the default mode network is involved in global brain signaling

hereas signaling in the somatomotor network is comparatively more

ocal ( Vatansever et al., 2015 ). 

The results of applying a clustering algorithm to the probabilistic

ow matrix in Fig. 3 A further reinforces features of both intra- and

nter-network brain organization ( Fig. 4 A) that are not captured by con-

entional correlations ( Fig. 4 B). In the clustering produced using con-

entional functional connectivity ( Fig. 4 B), as expected, each of the

etworks is well clustered (with the exception of the ventral attention

etwork and frontoparietal control network, which are known to have

unctional overlap ( Hacker et al., 2013 )). However, the network cluster-

ng in Fig. 4 B does not reveal any clear relationship between networks.

or example, on the basis of Fig. 4 B, there is no evidence that the de-

ault mode network may have a closer functional relationship with the

orsal attention or language networks as compared to the somatomotor

etwork. To take another example, the functional connectivity results

n Fig. 4 B do not point to any inter-network relationship between the

isual and fronto-parietal control networks. 

In contrast, the probabilistic flow clustering results in Fig. 4 A delin-

ate both intra- and inter-network groupings. Aside from the previous

xception of the overlap between the ventral attention and frontopari-

tal control networks, each network is again well clustered in that the

odes corresponding to each network are grouped closer to each other

han they are to other networks. In addition, the probabilistic flow clus-

ering in Fig. 4 A places networks in groups implying inter-network re-

ationships. For example, the language and dorsal attention networks

re in close proximity to the default mode network, and the frontopari-

tal control network is positioned next to the visual network. The basis

or these groupings is evident in Fig. 3 B, as these inter-network pairs

ach have high signaling probability. Prior work has given credence to

he concept that groups of networks coordinate their activities during

asks. In particular, functional relationships between the default mode

nd dorsal attention networks ( Kim, 2015 ), default mode and language

etworks ( Gordon et al., 2020 ), and visual and frontoparietal control

etworks ( Corbetta, 1998 ) have all been previously reported in task per-

ormance. 

In addition to highlighting specific pairwise relationships between

etworks, the probabilistic-flow clustering in Fig. 4 A reveals a whole-

rain functional organization built around three primary networks: the

efault mode network, the somatosensory network, and the visual net-

ork, precisely in line with prior work demonstrating continuous gra-
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ients in brain organization ( Margulies et al., 2016 ). On the basis of

he Margulies results and our current findings, we hypothesize that the

istinction between parcellation of brain areas based on differential cor-

elation and integration of regions based on signal flow may simply be

 question of probability. Small, distinct brain regions reflect patches

f very high probability signal flow, whereas a focus on broader sig-

al flow at lower probabilities yields an integrated view of how distinct

rain areas communicate. 

As illustrated in Figs. 4 B-C, use of the correlation and temporal de-

ay metric fails to capture the inter-network and intra-network features,

espectively, characterized by the probabilistic flow framework. There-

ore, not only is there utility probability flow framework for balancing

nter and intra-network organization in neural activity, we hypothesize

hat probabilistic flow of low frequency activity may be the basis of the

bserved organization of spontaneous fMRI data. 

.2. State changes in probability 

One of the fundamental questions in systems neuroscience is how

hanges in brain-wide activity relate to behavior. The probabilistic flow

etric may offer some insight. Our results reveal a marked change in

robabilistic flow, with respect to the left motor had area, between the

esting state and a simple visual-motor task (button push to visual cue,

ee Methods). Interestingly, the changes observed during task appear to

epresent a modulation of the flow probabilities during rest. For exam-

le, ventral visual areas (orange arrows in Fig. 2 ) were a low probability

eceiver of left motor hand area activity during rest, but become a high

robability receiver during task. Medial somatosensory cortex, on the

ther hand, continues to be a high probability sender of activity to the

eft motor hand area during rest and task. Therefore, we hypothesize

hat spontaneous flow of low frequency activity may represent a broad

et of possible paths for activity, which becomes sharpened into a nar-

ower set to accomplish particular behaviors. Future studies are required

o investigate this possibility. 

The specific directionality of the activity in Fig. 2 is also informative.

ne may expect that during a task in which a person pushes a button in

esponse to a visual cue, that activity should travel from visual cortex to

otor areas. Indeed, this represents the feed-forward direction of activ-

ty in such a task. However, to the contrary, our probabilistic flow maps

nstead show that activity becomes more likely to flow from motor to

isual areas during the task. This finding is in line with prior work sug-

esting that low frequency activity in the brain, especially frequencies

epresented by fMRI, may reflect feedback as opposed to feed-forward

ctivity ( Mitra et al., 2018 , 2016 ). More work is merited to further de-

ne the physiology and function of low frequency neural activity. 

Finally, the probabilistic perspective, which integrates correlation

nd latency information, may prove useful in detecting subtle patho-

hysiological changes in brain function in neuropsychiatric conditions

uch as autism spectrum disorders, schizophrenia, and Alzheimer’s dis-

ase. To date, clear, reproducible changes in low frequency activity that

re not attributable to motion have been difficult to document. How-

ver, one might imagine that opposed to large changes in correlation

r directionality, these conditions instead produce subtle alterations in

ow probabilities which in turn affect other neurophysiological pro-

esses. Several extant data sets offer the possibility of testing this hy-

othesis. 

.3. Bilateral symmetry 

One striking feature of the probabilistic flow metric in Fig. 2 , in the

esting state and the task condition, is the bilateral symmetry observed

n the maps, even though the task involves using only the right hand in

esponse to a visual stimulus. Our results are in agreement with previous

ork which has shown that low frequency brain activity is remarkably

ymmetric across the hemispheres ( Mohajerani et al., 2010 ). Even in

asks that are known to recruit unilateral brain areas, such as language
asks which preferentially recruit Broca’s area in the left hemisphere,

rior work has found that there is similar activity in the homologous

ight hemispheric region, albeit with smaller magnitude ( McAvoy et al.,

016 ). Critically, although there is a difference in amplitude between

he activity in the hemispheres evoked by the language task, there is no

easurable delay in the BOLD signal between the hemispheres. 

The mechanisms underlying bilateral synchrony in low frequency

ctivity are not fully understood. Prior work has shown that corpus cal-

osotomy leads to a reduction in correlation between the hemispheres

n human subjects ( Roland et al., 2017 ). Therefore, continuous high fre-

uency activity between the hemispheres may be responsible for ob-

erved bilateral symmetry. Additionally, optogenetic fMRI studies have

hown that unilateral stimulation of sensory relay nuclei in the thala-

us, including the lateral geniculate nucleus, evokes synchronized bi-

ateral activity ( Leong et al., 2019 ), which may also play a role in the

resent results. The functional significance of bilateral synchrony in ac-

ivity also remains unknown, although it could represent the widespread

haring of neural information across the cortices ( Allen et al., 2017 ). Fur-

her research is necessary to understand the mechanisms and function

f bilateral synchrony in low frequency activity. 

.4. Limitations 

The presently described approach to probabilistic flow in brain-wide

ctivity is meant simply as a guide. There are many approaches to com-

ute the probability of flow in high-dimensional data, and based on the

uestion of interest, the assumptions baked into the metric presented

ere may not be appropriate. For example, our approach focuses on

erminal sources and sinks of activity, but by instead focusing on in the

nverse of time delays, one could instead choose to investigate local flow

f activity. The current approach is also limited to linear sequences of

ctivity, which may not be suited to all systems. Additionally, treating

orrelation and latency information as equivalent is a simple assumption

or building a vector space, but depending on the application, correla-

ions or lag may appropriately carry more weight. As is the case for most

MRI findings, it is also important to note that the group average results

hown here can vary from individual to individual (see individual vari-

bility analysis in Supplementary Figure 2), and although recent evi-

ence shows a close correspondence between the spatio-temporal struc-

ure of low frequency neurophysiology and fMRI ( Mitra et al., 2018 ,

016 ), we cannot exclude that some features of the present results may

e attributable to vascular phenomena. 

To conclude, rather than arguing for one approach, we hope instead

hat the present work conveys the potential benefits of applying a prob-

bilistic framework to the study of wide-scale brain activity. By combin-

ng correlation and latency information, probability flow techniques of-

er unique insight into the broad dynamics of brain activity that captures

oth features of both inter- and intra-areal communication. Finally, the

robability flow concept need not be limited to fMRI. A similar approach

an easily be utilized in the study of mesoscale calcium imaging in mice,

s just one example. 

. Methods 

.1. MRI acquisition 

Two fMRI datasets are analyzed in the present manuscript (see

able 1 ). 

Dataset 1, collected with a 3T Siemens Allegra at Washington Univer-

ity and originally reported in ( Fox et al., 2007 ), imaging was collected

n both resting and task states. During rest, subjects were instructed to

emain still, stay awake, and keep their eyes fixated on a white crosshair.

uring the button press task subjects were instructed to press a button in

esponse to a visual cue, dimming of the fixation cross-hair from white

o dark-gray for a period of 250 ms. Subjects were instructed to press

 button with their right index finger as quickly as possible when they



A. Mitra, A.Z. Snyder and M.E. Raichle NeuroImage 223 (2020) 117321 

s  

r  

t  

(  

n

 

2  

B  

I  

w  

g

5

 

t  

o  

q  

r  

f  

i  

f  

(  

i  

d  

p  

m  

g  

a  

t  

e  

w  

i  

1  

f  

d

5

 

o  

o  

p  

e  

f

𝑟  

w  

x  

t  

f

𝐶  

w  

e  

t  

t  

B  

a  

s  

2  

S  

d  

a  

a  

r  

p

5

 

t  

c  

o  

z  

I  

a  

(  

i  

c  

p  

o  

l  

r  

f  

f  

s  

b  

b  

t  

t

 

a  

w  

f  

s  

s  

t  

a

5

 

2  

a  

2  

F

5

 

m  

s

f  

I  

n  

r

5

a

 

l  

a  

f  

s  

o  

W  

1  

r  
aw the crosshair dim. They were told that their reaction times would be

ecorded. Each of these button press runs contained 20 crosshair dims

ime-locked to the scanner TR, with an intertrial interval of 8–14 frames

17.3–30.2 s). Subjects practiced this button-press task once in the scan-

er, prior to the onset of the functional scans. 

Dataset 2, consisting of normal young adults ( N = 1376, mean age

1.4 ± 2.1 years, 57% female) was obtained from the Harvard-MGH

rain Genomics Superstruct Project ( Buckner et al., 2014 ) ( Table 1 ).

maging was performed with a 3T Siemens Tim Trio scanner equipped

ith a standard 12-chanel head coil. Additional imaging details are

iven in ( Thomas Yeo et al., 2011 ). 

.2. fMRI preprocessing 

fMRI preprocessing was as described in ( Mitra et al., 2014 ). Briefly,

his included compensation for slice-dependent time shifts, elimination

f systematic odd-even slice intensity differences due to interleaved ac-

uisition, and rigid body correction of head movement within and across

uns. Atlas transformation was achieved by composition of affine trans-

orms connecting the fMRI volumes with the T2W and T1W structural

mages. Head movement correction was included with the atlas trans-

ormation in a single resampling that generated volumetric timeseries in

3 mm) 3 atlas space. Additional preprocessing included spatial smooth-

ng (6 mm full width at half maximum (FWHM) Gaussian blur in each

irection), voxel-wise removal of linear trends over each fMRI run, tem-

oral low-pass filtering retaining frequencies below 0.1 Hz, and zero-

eaning each voxel time series. Spurious variance was reduced by re-

ression of nuisance waveforms derived from head motion correction

nd timeseries extracted from regions (of “non-interest ”) in white mat-

er and CSF. Nuisance regressors included also the BOLD timeseries av-

raged over the brain ( Fox et al., 2005 ). Additionally, frame censoring

as computed at a threshold of 0.5% root mean square frame-to-frame

ntensity change ( Power et al., 2012 ). Epochs containing fewer than

0 contiguous frames were excluded. These criteria removed 5.2% of

rames from analysis in dataset 1 and 3.5% of frames from analysis in

ataset 2. 

.3. Computation of lag and peak-correlation between BOLD time series 

Our method for computing lags between time series has been previ-

usly published ( Mitra et al., 2014 ). We briefly recapitulate the method-

logy here. Conventional seed-based correlation analysis involves com-

utation of the Pearson correlation, r , between the time series, x 1 ( t ),

xtracted from a seed region, and a second time series, x 2 ( t ), extracted

rom some other locus (single voxel or region of interest). Thus, 

 𝑥 1 𝑥 2 
= 

1 
𝜎𝑥 1 

𝜎𝑥 2 

1 
𝑇 

∫ 𝑥 1 ( 𝑡 ) ⋅ 𝑥 2 ( 𝑡 ) 𝑑𝑡, (S1)

here 𝜎𝑥 1 and 𝜎𝑥 2 are the temporal standard deviations of signals x 1 and

 2 , and T is the interval of integration. Here, we generalize the assump-

ion of exact temporal synchrony and compute lagged cross-correlation

unctions. Thus, 

 𝑥 1 𝑥 2 
( 𝜏) = 

1 
𝑇 

∫ 𝑥 1 ( 𝑡 + 𝜏) ⋅ 𝑥 2 ( 𝑡 ) 𝑑𝑡, (S2)

here 𝜏 is the lag (in units of time). The value of 𝜏 at which 𝐶 𝑥 1 𝑥 2 
( 𝜏)

xhibits an extremum defines the temporal lag (equivalently, delay) be-

ween signals x 1 and x 2 ( Konig, 1994 ). Although cross-correlation func-

ions can exhibit multiple extrema in the analysis of periodic signals,

OLD time series are aperiodic ( He et al., 2010 ; Maxim et al., 2005 ),

nd almost always give rise to lagged cross-correlation functions with a

ingle, well defined extremum, typically in the range ± 1 s ( Raut et al.,

019 ). However, thresholds up to ± 2.5 s yield very similar results (see

upplemental Figure 2). We determine the extremum abscissa and or-

inate using parabolic interpolation ( Fig. 1 ). For negative correlations

t zero-lag, we compute the minimum correlation in the range ± 1 s,
nd for positive correlations at zero lag we compute the maximum cor-

elation in the range ± 1 s. These values reflect the temporal delay and

eak absolute value correlation between pairs of time series. 

.4. Computation of probabilistic flow 

The mechanics of the probabilistic flow metric are outlined in de-

ail in the Theory section. As noted in the Theory section, in order to

ompute a time delay between two signals, there must be some amount

f correlation. If, for instance, the correlation between two signals were

ero, then there would not exist a peak correlation to define a time delay.

n practice, the amount of error in the inferred temporal delay increases

s a function of decreasing correlation between signals (See Fig. 3 B in

 Raut et al., 2019 )). Thus, to reduce the noise and increase the stabil-

ty of the probability metric, we opted to apply a minimum threshold

orrelation for computing a pair-wise probability. Signals with pairwise

eak correlations below the threshold were set to have zero-probability

f direct interaction. In the analyses shown, we set the minimum corre-

ation to |𝑟 | = 0 . 10 , on the basis of significantly increased error in tempo-

al delay estimates below this correlation value ( Raut et al., 2019 ). We

ound that the scope of the finding presented herein did not meaning-

ully change with different thresholds of |𝑟 | = 0 . 05 , |𝑟 | = 0 . 15 (data not

hown). However, thresholds less than |𝑟 | = 0 . 05 produced high proba-

ility interactions between pairs of voxels with low correlation on the

asis of inaccurate estimates of high latency values. Thresholds greater

han |𝑟 | = 0 . 15 predictably increased the sparsity of non-zero interac-

ions. 

For resting state data, probabilistic flow was computed using group-

veraged time delay and peak correlation information. For the task data,

e first computed activity attributable to the task by using the model-

ree, event-related approach of averaging 21.6 second epochs (corre-

ponding to 10 time points) linked to task onset both within and across

ubjects. Time delays and peak correlations were then computed in the

ask attributable time series, which in turn were used to compute prob-

bilistic flow. 

.5. Sorting voxels into networks 

In keeping with our previous analyses of dataset 2 ( Mitra et al., 2015 ,

014 ), we sorted voxels into networks according to a 7 network scheme

s defined by Hacker and colleagues in the same dataset ( Hacker et al.,

013 ). The topography of these networks is illustrated in Supplemental

igure 1. 

.6. t-Stochastic neighbor embedding 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a di-

ensionality reduction technique that has been described exten-

ively ( Maaten and Hinton, 2008 ). We applied t-SNE using the “tsne ”

unction in MATLAB and Statistics Toolbox Release 2017a (MathWorks,

nc., Natick, Massachusetts, United States). We applied the default bar-

eshut algorithm and Euclidian metric distance and did not apply PCA

eduction prior to the t-SNE algorithm. 

.7. Statistical analysis of block-wise intra- and inter-network flow 

verages 

To compute whether the inter- and intra-network averages of abso-

ute value probabilistic flow metrics in Fig. 3 B are statistically significant

s compared to a null model based only on the correlation structure of

MRI data, we produced surrogate time series with the same correlation

tructure and spectral content of real fMRI data, but with no constraint

n the temporal structure, as previously published in ( Mitra et al., 2015 ).

e simulated 10,000 datasets where each simulated fMRI dataset was

00 min in length, to match the minimum length of data required to

each stability in the probability flow metric (see Supplemental Figure
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). We then computed the block-wise averages of the absolute value of

he probabilistic flow metric as in Fig. 3 B in the simulated data, produc-

ng a null distribution for each intra- and inter-network block. Given the

ypothesis that temporal delays would increase the strength of the prob-

bility flow metric, we applied one-tailed test with respect to the null

istributions to determine whether the empirical values were greater

han 99.8% of the null distribution values in order to Bonferroni correct

or 28 comparisons. Blocks marked with asterisks met this criteria for

tatistical significance. 

.8. Statistical analysis of inter-network flow 

We applied a bootstrapping approach to estimate the statistical sig-

ificant of the network specific inter-network probabilistic flow results

n Fig. 3 C. We sub-sampled 10,000 inter-network averages computed

ver approximately 100 min of data (to match the minimum length of

ata required to reach stability in the probability flow metric, see Sup-

lemental Figure 2) in data set 2 and thereby computed variance around

he mean. As we were interested in both significant increases and de-

reases in the average absolute value of the inter-network flow metric,

tatistical significance was reached only if the cross network mean (gray

ine in Fig. 3 C) exceeded 99.65% of the bootstrapped distribution in or-

er to Bonferroni correct for 7 comparisons. 

.9. Null model for surrogate networks 

To explore whether the clustering result in Fig. 4 A was found by

hance, we generated surrogate resting state networks (RSNs) topo-

ogically matched to real RSNs and approximately matched in spa-

ial frequency distribution (this method was previously published in

 Mitra et al., 2014 ), see Supplementary Figure 1). Surrogate RSNs were

enerated by treating the left hemisphere of the real RSN brain as an el-

ment of a high dimensional symmetric group that respects the topology

f the true RSNs. We then applied randomly generated full-rank permu-

ations on the uni-hemispheric RSN brain partition. In greater detail, the

D MLP RSN partition was converted to a 1D vector and the ends were

onnected to form a ring. The ring, then, was randomly rotated and the

D to 1D transform inverted. In principle, other group operations could

ave been applied, but rotation theoretically preserves spatial scale. The

esulting 3D map was reflected across the mid-sagittal line to generate

emispherically symmetric surrogate RSNs. Equivalence of spatial scale

as verified by 3D-Fourier analysis in Figure 7 of ( Mitra et al., 2014 ).

sing this methodology, we generated 1000 surrogate RSNs and applied

he clustering analysis in Fig. 4 A with surrogate RSN labels. In each of

he 1000 cases, the correlation between the real t-sne result and the sur-

ogate network based result never exceeded a Pearson r of 0.01. On the

asis of these null results, the empirically derived clustering in Fig. 4 A

as a p-value of < 0.001. More importantly than a p-value estimate, the

ull simulations demonstrate empirically that the observed organization

f Fig. 4 A is highly unlikely to be found by chance alone. 
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