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Abstract
Measurement of correlations between brain regions (functional connectivity) using blood oxygen level dependent (BOLD)
fMRI has proven to be a powerful tool for studying the functional organization of the brain. Recently, dynamic functional
connectivity has emerged as a major topic in the resting-state BOLD fMRI literature. Here, using simulations and multiple
sets of empirical observations, we confirm that imposed task states can alter the correlation structure of BOLD activity.
However, we find that observations of “dynamic” BOLD correlations during the resting state are largely explained by
sampling variability. Beyond sampling variability, the largest part of observed “dynamics” during rest is attributable to head
motion. An additional component of dynamic variability during rest is attributable to fluctuating sleep state. Thus, aside
from the preceding explanatory factors, a single correlation structure—as opposed to a sequence of distinct correlation
structures—may adequately describe the resting state as measured by BOLD fMRI. These results suggest that resting-state
BOLD correlations do not primarily reflect moment-to-moment changes in cognitive content. Rather, resting-state BOLD
correlations may predominantly reflect processes concerned with the maintenance of the long-term stability of the brain’s
functional organization.
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Introduction
During the last two decades, the study of brain organization in
humans has been greatly accelerated by the advent of resting-
state fMRI, wherein blood oxygen level dependent (BOLD) sig-
nals are measured in quietly resting subjects. Using this para-
digm, it has been shown that temporal correlations in ongoing
fluctuations of the BOLD signal, that is, resting state functional
connectivity (RSFC), correspond to known functional systems
(Biswal et al. 1995; Smith et al. 2009; Power et al. 2011; Yeo et al.
2011). Thus, resting-state fMRI offers significant potential for
understanding the brain’s functional architecture. Much evi-
dence supports the hypothesis that RSFC is, in part, explained
by axonal connectivity (Honey et al. 2009), although it is also
clear that many RSFC relationships must reflect multisynaptic
pathways (Vincent et al. 2007; O’Reilly et al. 2013). Under this
view, RSFC has been understood to reflect stable features of
brain organization on a timescale of minutes to days and sig-
nificant efforts have been made to describe the relatively high
reliability of repeated RSFC estimates in the same individual
from day to day (Shehzad et al. 2009; Zuo and Xing 2014; Chen
et al. 2015; Laumann et al. 2015).

However, many recent reports have begun to explore
“dynamic” RSFC, that is, dramatically fluctuating patterns of cor-
relation over shorter timescales, on the order of seconds to min-
utes. These reports have suggested the presence of previously
unrecognized intraindividual correlation variability (Chang and
Glover 2010; Hutchison et al. 2013a). Several groups have exten-
sively characterized these RSFC dynamics and have attempted
to explain their physiological significance (Hutchison et al.
2013a; Calhoun et al. 2014; Kopell et al. 2014).

The most commonly used approach in studies of dynamic
RSFC is the sliding window technique (Chang and Glover 2010;
Hutchison et al. 2013b; Allen et al. 2014; Zalesky et al. 2014), in
which the correlation structure of BOLD fMRI is estimated at
successive time points over an interval of fixed duration on the
order of 100s. Dynamic BOLD behavior has also been character-
ized in terms of transient patterns of coactivation over much
shorter intervals (Tagliazucchi et al. 2012a; Liu and Duyn 2013;
Karahanoglu and Van De Ville 2015). The multiple transient
patterns of coactivation or correlation observed with these
techniques often are clustered into sets of dynamically recur-
ring patterns that have been interpreted as reflecting changes
in brain state on a short timescale (Allen et al. 2014; Hutchison
and Morton 2015). The hypothesized existence of such
“dynamic” RSFC would suggest that the statistical properties of
BOLD time series are nonstationary.

A process is said to be stationary if its statistics, for
example, spectral content and moments (mean, variance, kur-
tosis, etc.) are constant over time. Critically, stationarity does
not imply that a process is still. For example, a frictionless
pendulum may remain indefinitely in oscillatory motion;
nonetheless if the amplitude and frequency are constant, then
the motion is stationary. If the pendulum frequency or ampli-
tude were to change, say, in reaction to an applied force, then
the motion would be nonstationary. The analogy to BOLD
RSFC is not perfect because the motion of a pendulum is peri-
odic whereas BOLD time series are aperiodic, that is, they
exhibit approximately scale-free or 1/f-like the spectral con-
tent (He et al. 2010). Moreover, the pendulum moves in one
dimension (angle relative to vertical), whereas BOLD time ser-
ies are multidimensional. Nevertheless, the pendulum
example illustrates a process that is constantly in motion but
whose statistics are stationary. It is this property that is

implicitly evaluated in studies that aim to characterize RSFC
dynamics.

Several recent papers have pointed out that certain analytic
techniques are prone to creating the false appearance of
“dynamics” in RSFC that may be misinterpreted as nonstatio-
narity (Lindquist et al. 2014; Zalesky et al. 2014; Hlinka and
Hadrava 2015; Leonardi and Van De Ville 2015). We illustrate
this principle in the present work by applying dynamic ana-
lyses to simulated data that are statistically stationary by
design. Perhaps more importantly, it has become widely recog-
nized that head motion is a prominent source of artifact in
resting state fMRI (Power et al. 2012; Van Dijk et al. 2012;
Zalesky and Breakspear 2015). Thus, head motion represents a
significant potential source of artifactual nonstationarity. On
the other hand, physiologically meaningful changes in brain
state are also likely to change the correlation structure of the
BOLD signal. In particular, it has been demonstrated that BOLD
correlation structure changes according to sleep state (Horovitz
et al. 2009; Tagliazucchi et al. 2012a; Tagliazucchi and Laufs,
2014). Similarly, it is known that the BOLD correlation structure
varies in relation to the cognitive state imposed by external
task demands (Cole et al. 2014; Krienen et al. 2014). Both of
these processes are reasonably understood as sources of bona
fide nonstationarity.

Here, we evaluate the above-enumerated potential sources
of “dynamic” RSFC in terms of multivariate kurtosis (Henze,
2002; described in detail below). To obtain a heuristic under-
standing of the relevance of kurtosis, consider first a univariate
time-dependent signal. The mean and the variance are statis-
tics of orders 1 and 2, respectively. More generally, the sam-
pling variability of a statistic of order m is proportional to the
moment of order 2m (Weatherburn 1961). Thus, a statistic of
order 4, that is, the kurtosis, is proportional to the sampling
variability of an order 2 statistic. These statistical relations can
be generalized to the multivariate case and applied to BOLD
fMRI time series. The most direct measure of RSFC is the
covariance matrix, which is a statistic of order 2. Thus, the
multivariate fourth moment (kurtosis) of BOLD fMRI data can
be used to assess the degree to which RSFC is stable. We com-
pare the multivariate kurtosis of real data to that of a matched,
stationary, synthetic surrogate. We use this strategy to assess
the effects of head motion, sleep state, and imposed task
states.

Materials and Methods
Several previously collected data sets were used for analyses
(Figs 3, 4, and 6). These data sets are enumerated in
Supplementary Table S1. Additional details of these data sets
are reported in the Supplementary Materials. The primary data
set is described below (Figs 1, 2, 5, and 6) with additional acqui-
sition and processing details in the Supplementary Materials.

Subjects and Data Acquisition

Data contributing to the main analyses were collected in 10
healthy, right-handed, young adult subjects (5 females; age: 24–
34). Two of the subjects are authors (N.U.F.D. and S.M.N.), and
the remaining subjects were recruited from the Washington
University community. Informed consent was obtained from
all participants. Imaging was performed over 12 days on a
Siemens TRIO 3 T MRI scanner. For each subject, 30 contiguous
minutes of resting state BOLD fMRI data were collected on 10
separate days (total time = 300 min per subject).
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RSFC Preprocessing

Artifacts were reduced using frame censoring, nuisance regres-
sion (excluding censored frames), interpolation, and bandpass
filtering (0.009 < f < 0.08 Hz) following Power et al. (2014).
Nuisance regressors included the whole-brain mean, white
matter, and ventricular signals and their derivatives, in add-
ition to 24 movement regressors derived by expansion (Friston
et al. 1996; Satterthwaite et al. 2012; Yan et al. 2013). To assess
the impact of motion, results are presented both with and
without the frame censoring. Frames with framewise displace-
ment (FD) > 0.2mm were censored (Salek-Haddadi et al. 2006),
as well as uncensored segments of data lasting fewer than 5
contiguous volumes (mean frames kept across sessions:
72.5% ± 25%). Censored frames were not counted in kurtosis
estimations.

Region of Interest Definition

All analyses presented here are based on time series
extracted using a group-level cortical parcellation described
in Gordon et al. (2016). This 333-region parcellation covers
most of the cortical surface, and has been divided into 12 net-
works based on the Infomap community detection technique
(Rosvall and Bergstrom 2008; Power et al. 2011). The parcels
and their network assignments are shown in Supplementary
Figure S1.

BOLD fMRI Time Series Simulation

The objective of the simulation is to create surrogate multivari-
ate time series matched in covariance and spectral properties
to BOLD data acquired in individual subjects. A detailed formal
account of the simulation algorithm is provided in the
Appendix of Supplementary Materials. Figure 1 illustrates the
principles of the procedure. In brief, we sampled random nor-
mal deviates of the same dimensionality as a real data set.
These time series are multiplied in the spectral domain by the
average power spectrum derived from the region of interests
(ROIs) of a full-length real data set. It should be noted that the
real data set has already undergone bandpass filtering (as
described above). Therefore, the spectral matching of the simu-
lated data reflects the spectral content of postfiltered real data.
These time series are then projected onto the eigenvectors
derived from the covariance matrix of real data computed from
the full 30 min of a given run. As the eigenvectors derived from
the decomposition are orthogonal, they provide a convenient
means of reconstructing the covariance structure of the real
data from random normal deviates. This procedure produces
simulated data that are stationary by construction but matched
to real data in the covariance structure and mean spectral con-
tent (compare last two rows of Fig. 1). These simulated time
series can then act as a null against which to evaluate nonsta-
tionary features of real data. Matlab code used to create simu-
lated time series is available at our lab website (http://www.nil.
wustl.edu/petersenschlaggar/Resources.html).

Figure 1. Generation of simulated data. (1) BOLD fMRI time series are simulated by first sampling random normal deviates. (2) These time series are projected onto

the eigenvectors of the covariance matrix of real data averaged over ten 30-min sessions from each subject. (3) The projected time series then are matched to the

average parcel-wise power spectrum of the real data by multiplication in the spectral domain. The final simulated data share the covariance and spectral features of

real data (compare with bottom row) and are stationary by construction.

On the Stability of BOLD fMRI Correlations Laumann et al. | 4721

http://CERCOR.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw265/-/DC1
http://CERCOR.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw265/-/DC1
http://www.nil.wustl.edu/petersenschlaggar/Resources.html
http://www.nil.wustl.edu/petersenschlaggar/Resources.html


Sliding Window Analysis

To estimate fluctuating connectivity over time, we adopt the
commonly used sliding window strategy (Chang and Glover
2010; Hutchison et al. 2013b; Zalesky et al. 2014). Specifically,
we extract time series from the cortical surface using the 333-
area parcellation described in Gordon et al. (2016). Correlations
are then computed at each time point between windowed sam-
ples of the time series tapered by a Gaussian function to
center-weight the contribution of proximal time points.
Window size is adjustable by changing the number of frames
specified as the full width at half maximum. The time series
are high-pass filtered at the frequency of the lowest frequency
allowing a full cycle given the window length. Here, we use
100 s windows, according to the recommendation of Leonardi
and Van De Ville, that the window length should exceed the
slowest frequencies commonly assumed to comprise the BOLD
signal (Leonardi and Van De Ville 2015; Zalesky and Breakspear
2015). Thus, the time series are high-pass filtered at 0.01 Hz. To
illustrate sliding window fluctuations at the network level, we
averaged all correlations between regions within each network
at each window. Real and simulated time series of within-
network connectivity can be seen in Fig. 1 in the far right
column.

State Analysis

To group the correlation patterns generated by the sliding win-
dow procedure, we adopted the k-means clustering algorithm
commonly used in the literature (Allen et al. 2014; Hutchison
and Morton 2015). The correlation patterns were dimensional-
ity reduced from 55 278 (333 parcels × 333 parcels) to 30 dimen-
sions by principal component analysis (PCA) prior to clustering
to stabilize the computations and reduce computational
demand. The Mahalanobis distance function was used to com-
pute the separation between each window’s correlation pattern
and the k-means algorithm was iterated 100 times with ran-
dom centroid positions to avoid local minima. Windows from
all sessions and all subjects were used in the clustering, exclud-
ing 19 sessions (8 from 1 subject) that had more than half of
their frames discarded because of excessive head motion. The
window length for this analysis was 100 s and the windows
were overlapping with a separation of 11 s between window
centers, generating 155 windows per session. The windowed
correlation patterns were mean-centered by run to eliminate
run-level or subject-level features from contributing to the clus-
tering result. k-means clustering was applied in the same man-
ner to 81 sessions of simulated data, where each subject’s
BOLD power spectrum and covariance were used to generate
the same number of sessions as were used in the real data. The
cluster validity index was used to evaluate the quality of clus-
tering for a range of cluster numbers (k = 2–10). The cluster val-
idity index was computed as the average ratio of within-cluster
distance to between-cluster distance.

Kurtosis of Mardia

Nonstationarity in the context of electrophysiology is fre-
quently evaluated using spectral descriptors (Wong et al. 2006;
Halliday et al. 2009). Prior methods for evaluating nonstationar-
ity in RSFC have relied on bivariate analyses, that is, analyzing
multivariate data taken pairwise (Chang and Glover 2010;
Hindriks et al. 2016). However, in these methods the number of
free parameters grows in proportion to the square of the
dimensionality of the data set, which limits computational

tractability when the number of regions is large. Here, we take
a different approach based on demonstrating that BOLD fMRI
time series are consistent with a multivariate normal process.
In greater detail, we evaluate the multivariate fourth moment
(kurtosis) of BOLD fMRI data. Kurtosis values consistent with
multivariate normality imply stationarity. On the other hand,
kurtosis values inconsistent with multivariate normality may
indicate either that (1) the data are multivariate normal but
exhibit nonconstant covariance or (2) the data are stationary
but not normally distributed. In addition, kurtosis is insensitive
to nonstationarity of spectral content (see Discussion in
Supplementary Materials). Thus, kurtosis estimation does not
address stationarity in a strict sense. Nevertheless, kurtosis
estimation is useful for investigating whether or not BOLD fMRI
data exhibit nonconstant covariance, assuming multivariate
normality.

We adopt a measure of multivariate kurtosis introduced
by Mardia (1970) and Henze (2002). Let …Y Y Y, , , n1 2 denote vectors
Yj of dimension d, where ≤ ≤j n1 . Here, Y corresponds to pre-
processed fMRI data of duration n frames and d corresponds
either to number of ROIs or the dimensionality of the data fol-
lowing dimensionality reduction (see Supplementary Materials).
Importantly, the data have been made zero-mean during prepro-
cessing. Thus, Y̅ , the mean value over all frames, is a ×d 1 col-
umn of zeros. The sample covariance matrix is
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where the superscript, T, denotes matrix transpose and the
equality holds because the data have been made zero-mean
during preprocessing. The squared Mahalonobis distance
between any two frames, indexed by j and k, is
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is a scalar that reflects the dissimilarity between frames j and
k. These dissimilarity measures may be assembled into the
symmetric ×n n matrix, D. Multivariate kurtosis in the sense of
Mardia may be evaluated by summing the squared diagonals of
D. Thus,
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Following the convention of Henze (2002), the subscripts in bn d,

denote number of samples and dimensionality, respectively.
One advantage of this statistic in this context is that it avoids
arbitrary parameter choices (e.g., window size and window
function—Hamming, Boxcar, etc.) that arise using sliding win-
dow statistics. Furthermore, sliding windows usually generate
nonindependent successive estimates, which complicates the
estimation of appropriate statistics for evaluating correlation
variability. In the analyses presented here, multidimensional
time series (both simulated and real) were extracted from the
333 cortical ROIs defined in the aforementioned cortical parcel-
lation. This number of regions exceeds the dimensionality of
BOLD fMRI data (Cordes and Nandy 2006). Thus, the 333 × 333
covariance matrix of the data would be rank deficient, and the
inversion required by equation (2) would be unstable.
Accordingly, the dimensionality of the “raw” data was reduced
via principal components analysis from 333 to 30, thereby sta-
bilizing the kurtosis calculation while still retaining a
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reasonable number of independent signals. In the limit of an
infinite sample size ( →∞n ), the expected multivariate kurtosis
of a normal stationary multivariate process of dimensionality d
is d(d + 2). In practice, the obtained value depends on the sam-
ple size and the temporal autocorrelation of the simulated pro-
cess. Thus, the multivariate kurtosis will be lower for
simulations of finite length that are based on time series with
filtered spectral content (Supplementary Fig. S2). Accordingly,
in this work, the simulated data were always matched in size
to the real data in comparisons of multivariate kurtosis.

Sleep Index

To assess the level of wakefulness in each session, we devel-
oped a sleep index (SI). This SI was based on a separate high-
quality resting state fMRI data set (Data set 4, see
Supplementary Materials) acquired on subjects in known states
of wake and sleep as determined by EEG (Tagliazucchi and
Laufs 2014). Using these data, we computed the difference
between the light sleep (N1 and N2) and wake covariance
matrices and applied spatial PCA to the difference matrix. The
weights in the first PC highlight those voxels whose covariance
structure is maximally altered in wake versus sleep (Mitra et al.
2015b). To select voxels exhibiting maximal change, we applied
a Fisher z-transform to the weights in the first PC, and selected
only voxels whose weights were in the 95th percentile. Voxels
in the occipital cortex were manually excluded, to avoid con-
founds arising from the fact that the data in the main analysis
were acquired in the eyes-open state, whereas the sleep data
were acquired in the eyes-closed state (during both wake and
sleep). Covariance matrices from these voxels were computed for
each session of each subject in the main data set. These covari-
ance matrices then were compared by Pearson correlation to the
covariance matrices from the sleep (N1 and N2) and wake states
of the sleep data set. The SI was computed as the similarity to
the sleep state (averaged over N1 and N2) minus the similarity to
the wake state. A higher value of the SI means the session had
covariance relatively more similar to sleep than wake.

Results
Simulated Stationary Data Exhibit Apparently
“Dynamic” RSFC

All present results were obtained by comparison of real data to
a null model matched in covariance structure and spectral con-
tent to real BOLD fMRI data. The procedure used to generate
time series with these properties are illustrated in Figure 1 for
an exemplar subject. In the top row, we show the correlation
structure and spectral content of random normal deviates of
the same dimensionality as a particular real data set. As
expected, on average, random normal deviates have identity
correlation and flat spectral content. In the second row, we
illustrate random normal deviates that have been projected
onto the eigenvectors of the covariance structure of the real
data. These time series have covariance structure matched to
real data but lack the characteristic frequency content of BOLD
data. In the third row, the time series have been spectrally fil-
tered to duplicate the average power spectrum of real data and
have been projected onto the eigenvectors of the covariance
structure of the real data. This procedure produces simulated
time series with the covariance (hence, network structure),
spectral structure, and length of real data (compare last two
rows of Fig. 1). These simulated data are stationary by
construction.

The rightmost panel of Figure 1 shows within-network func-
tional connectivity (averaged over within-network ROI pairs)
computed over sliding windows of 100 s. The real and simu-
lated data exhibit similarly patterned fluctuations in within-
network RSFC.

To examine the dynamic properties of the simulated data in
greater detail, we performed a k-means clustering analysis
(k = 7) of sliding window correlation matrices as described in
recent publications (Allen et al. 2014; Hutchison and Morton
2015). Figure 2A shows results obtained with both real data
(excluding sessions with fewer than 50% frames retained) and a
typical iteration of matched simulated data. The “state” correl-
ation matrices obtained from real and simulated data are very
similar—the average Pearson correlation between matched real
and simulated “states” is r = 0.96 ± 0.01. Two additional ana-
lyses demonstrate the similarity between both types of data
(Fig. 2B,C). First, correlation matrices computed at each sliding
window were projected onto two dimensions and colored by
their “state” assignments. Second, cluster validity indices were
computed as described in Allen et al. (2014) (see “Materials and
Methods” section). Inspection of these results reveals, first, that
the distributions of windowed correlations exhibit no obvious
evidence of separable “state” clusters and, second, that there
are no discernable differences in the statistical properties of
the real and simulated data. Since the simulated data are sta-
tionary, this result demonstrates that the appearance of dis-
crete “states” can be generated by sampling variability.
Furthermore, the appearance of nearly identical “states” in the
real data suggests that these “states” likely may also be
explained by sampling variability.

Excess Multivariate Kurtosis Is Detected in Multivariate
Time Series That Include More Than One State

Variability of second-order statistics theoretically is reflected as
elevated multivariate kurtosis (Martins 2007). Accordingly, we
adopt a measure of multivariate kurtosis introduced by Mardia
(1970). To illustrate the sensitivity of this measure to changes
in covariance, we generated two simulations of multivariate
processes based on the measured covariance structure of eyes-
open and eyes-closed data. Data for this analysis were collected
as part of the MyConnectome Project and have been previously
reported (Laumann et al. 2015; Poldrack et al. 2015). Opening
versus closing the eyes induces a well documented, albeit sub-
tle, change in the covariance structure of BOLD fMRI data
(Fig. 3A; McAvoy et al. 2008; Laumann et al. 2015). The first
simulation assumes an “eyes-open” covariance structure over
the entire run. In the second simulation, the covariance struc-
ture changed from “eyes-open” to “eyes-closed” halfway
through the run. The multivariate kurtosis measures obtained
from the two simulations are shown in Figure 3C. The two-
state simulation yielded greater kurtosis relative to the one-
state simulation. This observation demonstrates that multi-
variate kurtosis is sensitive to nonstationarity in the covariance
structure of BOLD fMRI time series. It should be noted that the
statistic should be sensitive to covariance changes regardless
of their cause, for example, relative phase changes or changes
in variance magnitude. Additional simulations in Supplemen-
tary Figure S3 illustrate this principle in a simple toy case of
bivariate time series. However, they further show that multi-
variate kurtosis is not sensitive to disjoint spectral content
across ROIs as long as the sum of the power across frequencies
remains constant over time (Supplementary Fig. S3A).
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Removal of High-Motion Frames Reduces Kurtosis

Head motion is known to cause transient whole-brain changes
in BOLD fMRI data that substantially alter RSFC (Power et al.
2012; Satterthwaite et al. 2012; Van Dijk et al. 2012).
Accordingly, head motion could be a cause of observed non-
normality in resting state data. Here, we test this hypothesis by
plotting measured kurtosis against FD, both measures being
evaluated over whole runs (Fig. 4A). The relation across all runs
between multivariate kurtosis and mean FD was evaluated by
Pearson correlation. In the uncensored data, kurtosis was posi-
tively correlated with the mean FD of the run (r = 0.50, p = 10−7)
and demonstrated values substantially above the baseline level
observed in stationary simulated data (red line), especially in
heavily motion-compromised runs. This relation was effect-
ively eliminated following frame censoring (Power et al. 2014).
Indeed, in several cases, frame censoring reduced multivariate
kurtosis almost to the level computed in the corresponding
simulated stationary data. Some runs with significant motion
demonstrated measured multivariate kurtosis slightly below
the expected mean value. This may be because, as shown in
Supplementary Figure S2, multivariate kurtosis depends on run
length and, for these runs, frame censoring substantially
reduced the number of time points. We note, however, that
random removal of frames (as opposed to frames selected for
high motion) has a more modest effect on measured kurtosis
(see Supplementary Fig. S4).

The underlying basis of this effect is illustrated in Figure 4B
using all time points from all 10 sessions (818 frames per ses-
sion) acquired in a single subject. Censoring high-motion
(FD > 0.2mm) frames removes time points inconsistent with a

multivariate normal process. More generally, across all subjects
and sessions, multivariate kurtosis systematically increases as
a function of FD threshold (Fig. 4C). This result suggests that
some data sets may be made to approach normality (red line)
by application of a stringent frame censoring FD threshold.
However, for many data sets such a maneuver would also elim-
inate much or all of the data.

Fluctuating Drowsiness Contributes to Nonconstant
RSFC

Sleep changes the correlation structure of spontaneous BOLD
fMRI (Picchioni et al. 2013). Moreover, Tagliazucchi and Laufs
(2014) have demonstrated that many data sets acquired with
the intention of studying the awake resting state are contami-
nated by sleep. Hence, drowsiness is a likely source of “bona
fide” (i.e., of neural origin) nonstationarity in RSFC. Since our
data were not acquired with simultaneous EEG recording, we
used the Tagliazucchi/Laufs data set (Tagliazucchi et al. 2013),
in which sleep stage is known, to define a set of regions by
which it is possible to compute a “SI” for each fMRI run. The
most discriminating regions for identifying sleep in eyes-closed
data are in visual cortex, somatomotor cortex, and the thal-
amus (Tagliazucchi et al. 2012b). We omitted visual regions in
formulating our SI as our data were collected with eyes-open,
while Tagliazucchi/Laufs data set was collected with eyes-
closed, as these regions are most affected by eye state (McAvoy
et al. 2008; Bianciardi et al. 2009). Given that subjects tend to
become drowsy over the course of a 30-min resting state fMRI
run (even if they are instructed to stay awake and maintain

Figure 2. Real and simulated data have the same “states.” (A) Average correlation matrices corresponding to clusters (k = 7) derived by analysis of correlation matrices

over sliding windows. Real and simulated data produce very similar “state” patterns. (B) Sliding window correlation matrices projected onto the first two principal

components. Colors correspond to “state” identity in (A). (C) Similarly, the cluster validity index by number of clusters is nearly identical in the real and simulated

data. To specifically illustrate sampling variability masquerading as “nonstationarity,” the impact of artifactual nonstationarity was minimized by excluding data cor-

rupted by head motion. Thus, sessions with fewer than 50% of frames retained by scrubbing criteria were excluded entirely.
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visual fixation), we may expect that the SI should systematic-
ally increase with time in the scanner. Supplementary
Figure S6 demonstrates that, on average, this effect was
observed in our data.

We plotted kurtosis against the SI across sessions, restrict-
ing this analysis to frame-censored data. This analysis revealed
a significant correlation between the two measures (r = 0.315,
p = 0.0044; Fig. 5). Thus, fluctuating drowsiness over the course
of a resting state session may contribute to observed non-
normality in RSFC. However, in our data, this effect is quantita-
tively dwarfed by the effects of head motion (compare scales in
Figs 4A vs. 5).

Induced Changes in Cognitive State are Detectable
Using Multivariate Kurtosis

Accumulating evidence indicates that BOLD fMRI correlation
relationships are altered during performance of various tasks
(Fransson 2006; Al-Aidroos et al. 2012; Cole et al. 2014; Krienen
et al. 2014). Hence, alternation between rest and task states

should lead to nonconstant correlation structure detectable as
elevated kurtosis. To test this hypothesis, we sampled time ser-
ies from the same parcels used in prior analyses (see
Supplementary Fig. S1), acquired while participants performed
three different mixed block/event-related tasks (N = 24). Data
used for this analysis have been previously described else-
where (Dubis et al. 2016; see Supplementary Materials for
acquisition details). Each task run began and ended with 50 s of
resting-state fixation and included two 175-s task blocks sepa-
rated by 50 s of resting fixation. Separate runs of rest data also
were collected in the same subjects. The task data were pro-
cessed in the same manner as the rest data, with the additional
step of regressing out the mixed block/event task model, as
in Al-Aidroos et al. (2012) to remove first-order time-locked
responses from the time series. Processing included frame cen-
soring to account for head motion for reasons discussed in the
next section. We observed that relative to continuous resting-
state runs multivariate kurtosis was increased in block-design
in which tasks alternated with rest (Fig. 6). Paired t-tests indi-
cated that all three tasks exhibited significant increases in

Figure 3. Multivariate kurtosis is sensitive to state changes in simulated multivariate data. (A) Average correlation matrices from real data acquired in eyes-open (EO;

ten 10-min sessions) and eyes-closed (EC; ten 10-min sessions) conditions. The primary differences are in visual and somatomotor cortex. (B) Sliding window correl-

ation results averaged over 10 000 simulations. The plotted values are the mean (over all simulations) Pearson correlation between the windowed correlation matrices

and the “true” correlation matrices shown in panel A (blue = eyes-open, red = eyes-closed). The first simulation models the eyes-open condition throughout. The

second simulation models the eyes closing halfway through the session. The plotted correlation values are substantially <1, even for windows matched to the refer-

ence state, because of sampling variability (Laumann et al. 2015). (C) Distribution of computed multivariate kurtosis values over the 10 000 simulations. pdf, probabil-

ity density function. Multivariate kurtosis is systematically greater for the two-state simulation relative to the one-state simulation. Time series of finite duration

yield kurtosis values that are systematically lower than expected in the limit of infinite sample size (see Supplementary Fig. S2). Thus, if d = 30, the expected kurtosis

is d (d + 2) = 960 for data of infinite length, whereas the mean value in the perfectly stationary simulation here is 945.
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multivariate kurtosis relative to resting runs (Coherence task:
t(23) = 3.05, p = 0.006; Semantic task: t(23) = 3.51, p = 0.002;
Mental Rotation task: t(23) = 5.19, p ≪ 0.001). The largest

kurtosis increase was observed in the mental rotation runs.
This task also induces the largest change in correlation struc-
ture relative to rest. These observations demonstrate that ele-
vated kurtosis can be induced by alternating between task and
rest blocks even after the removal of evoked responses.

Discussion
We evaluated the degree to which the correlation structure of
BOLD fMRI is stable over time using multivariate kurtosis and
comparing real data to statistically matched stationary simula-
tions. In the resting state, we find that observed fluctuations in
correlation structure are largely attributable to three major fac-
tors: 1) sampling variability intrinsic to measuring correlations
in short windows; 2) signal changes related to head motion;
and 3) correlation changes related to changes in sleep state. Of
these, only the last is physiologically meaningful. Thus, the
correlation structure of resting-state BOLD fMRI data appears to
be very nearly constant, discounting the effects of sleep and
head motion. On the other hand, changes in cognitive state
induced by alternating task with rest blocks were associated
with increased multivariate kurtosis (Fig. 6).

We should be clear that multivariate kurtosis assesses the
degree to which a process is multivariate normal with constant
covariance; it does not fully assess the stationarity of all

Figure 4. Multivariate kurtosis is related to head motion. (A) Multivariate kurtosis plotted against mean framewise displacement (FD). Each blue dot represents one

session. All 10 sessions from each of 10 subjects are represented. Kurtosis is computed on the first 30 principal components derived from each session (see “Materials

and Methods” section). The average kurtosis of simulated stationary data is indicated by the red line (~952). The top and bottom plots were generated without and

with frame censoring, respectively. (B) BOLD fMRI data from all 10 sessions of one example subject projected onto the first two principal components. Each dot repre-

sents one frame. Colors correspond to session; note no systematic effect of session. Results obtained without and with frame censoring are shown on the left and

right, respectively. Frame censoring (FD > 0.2mm) markedly reduces outlier data. (C) Multivariate kurtosis as a function of frame censoring FD threshold across all

sessions and subjects. Shading indicates the standard deviation. The red line indicates the average multivariate kurtosis of simulated data.

Figure 5. Multivariate kurtosis correlates with SI. Kurtosis is computed on the

first 30 principal components derived from each session. Sessions have been

frame censored. Any session with fewer than 50% frames retained has been

removed. One session with a kurtosis measure 4.7 SD from the mean was

excluded. The average kurtosis corresponding to simulated stationary data is

indicated by the red line (~952).
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aspects of a process. For example, nonconstant spectral con-
tent would not be detectable by kurtosis, provided that the
covariance is constant (see Appendix of Supplementary
Materials for further discussion of this point). Alternative mea-
sures that allow for testing of nonstationarity in higher-order
statistics and in spectral content do exist (Last and Shumway
2008; Jentsch and Subba Rao 2015). We evaluated kurtosis
because it offers the advantage of more straightforward applic-
ability to multivariate data. Kurtosis is sensitive to nonstatio-
narity of second-order statistics, which is the quantity of
interest in RSFC studies. Moreover, multivariate kurtosis evalu-
ates the FC of all pairs of regions at once. Alternative techni-
ques are formulated in terms of single pairs of signals (Zalesky
et al. 2014; Hindriks et al. 2016).

Sampling Error Can Lead to the Appearance of
“Dynamic” Functional Connectivity

Using a stationary simulation incorporating the spectral content
and covariance structure of real BOLD fMRI data, we demon-
strate that sampling variability can contribute to the illusory
appearance of discrete functional connectivity “states” (Fig. 2).
Several recent papers have pointed out that much of the prior
literature on “dynamic” functional connectivity is based on
inappropriate analytic techniques (Lindquist et al. 2014; Zalesky
et al. 2014; Leonardi and Van De Ville 2015). Our results reinforce
this observation and further demonstrate that distinct correl-
ation structures extracted from real data closely resemble the
correlation structures in simulated stationary data. These results
are consistent with work by Hindriks et al. (2016) that reported
no evidence of nonstationarity in resting state BOLD correla-
tions, and similar observations made in relation to EEG data
(Hlinka and Hadrava 2015). We have also previously shown that
day-to-day variability in the correlation structure of resting state
BOLD fMRI data (acquired in a single individual) is almost
entirely (>98%) attributable to sampling error, that is, is inversely

proportional to the total quantity of analyzed data (Laumann
et al. 2015). Thus, the model described in the prior work predicts
that low reliability will be the dominant feature of RSFC estima-
tion at very short timescales, purely as a result of sampling
error. Indeed, the present findings confirm this expectation.

Head Motion is a Major Source of Artifactually Elevated
Kurtosis

Head motion artifact accounts for much of the excess kurtosis
observed in our data (Fig. 4). Head motion has already been
identified as a major source of artifact in conventional resting
state fMRI (Power et al. 2012; Van Dijk et al. 2012). Our analyses
(Fig. 4) show that measured multivariate kurtosis is correlated
with the quantity of head motion on a per-fMRI-run basis.
Importantly, censoring of high-motion frames (FD > 0.2mm),
as previously described (Power et al. 2014) substantially
reduced measured kurtosis, far more than randomly removing
frames (Supplementary Fig. S4). In a minority of cases, kurtosis
was reduced to levels obtained by analysis of matched simu-
lated data (Fig. 4A). However, in most cases, this maneuver did
not completely eliminate the effects of head motion. Figure 4C
suggests that if even stricter movement criteria are used more
sessions may approach this baseline. These results imply that
a substantial portion of RSFC “dynamics” may be attributable to
head motion and suggest that caution must be exercised when
interpreting measurements of dynamic RSFC. Indeed, subject
by subject and day by day differences in motion may lead to
artifactual variability in dynamic RSFC measures (Lindquist
et al. 2014), making reliable associations with behavioral mea-
sures a serious challenge.

Fluctuating Drowsiness Increases Multivariate Kurtosis
of Resting State BOLD fMRI Data

Sleep unambiguously modifies intrinsic neural activity.
Indeed, sleep stages are defined in terms of specific EEG signa-
tures (Dement and Kleitman 1957). More recently, it has been
shown that sleep staging also can be computed on the basis of
RSFC data (Tagliazucchi et al. 2012a) and, moreover, that about
one-third of publicly released RSFC data sets are affected by
sleep within the first few minutes of scanning, although this
finding was less prominent in data sets acquired with eyes-
open fixation, as in the present case (Tagliazucchi and Laufs
2014). Nevertheless, we evaluated sleep as an explanatory fac-
tor in our results. Following aggressive frame censoring, mea-
sured kurtosis was still significantly correlated with the RSFC-
derived SI (Fig. 5). Thus, at least some observed non-normality
in RSFC is likely related to fluctuating drowsiness over the
course of the scan.

Owing to limitations in the design of our SI (see “Materials
and Methods” section), it is likely that the present results
underestimate the extent to which sleep accounts for variabil-
ity in RSFC. Our assessment may also be complicated by head
motion in subjects who were struggling to keep their eyes-open
and stay awake. Some periods of fluctuating drowsiness prob-
ably were discarded by frame censoring, thereby reducing our
estimated prevalence of sleep.

Changes in Cognitive State Increase Multivariate
Kurtosis of Resting State BOLD fMRI Data

We found that alternating task and rest blocks lead to a meas-
urable, but modest, increment in kurtosis over the level

Figure 6. Alternating blocks of task/rest give rise to greater multivariate kurtosis

than continuous resting state. Kurtosis values from task/rest runs (3 duplicate

runs per paradigm) were averaged and compared with kurtosis values from

continuous resting state runs of the same length (470 s) in the same subjects

(N = 24). Three different task paradigms were used: Glass pattern coherence dis-

crimination (red), noun versus verb semantic judgment (green), and mental

rotation (purple). Plots represent smoothed histograms of the kurtosis values.

Bars above indicate the mean and standard deviation for each condition. The

dotted black line represents the mean kurtosis (932) of simulated stationary

data of the same length as the task runs. Nonsmoothed histograms are

reported in Supplementary Figure S5.
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observed in continuous resting state data (Fig. 6). Previous
authors have emphasized that task performance does not
greatly perturb the “core” architecture of functional connectiv-
ity (Cole et al. 2014; Krienen et al. 2014). Nevertheless, statistic-
ally reliable changes in correlation structure have been
observed in a variety of task contexts (Cole et al. 2014; Krienen
et al. 2014; Gonzalez-Castillo et al. 2015). These changes fre-
quently localize to regions of the brain presumed to be involved
in task-specific processing, for example, altered FC in visual
regions during a visual attention task (Al-Aidroos et al.
2012). Additionally, it has been proposed that spontaneous
activity itself is suppressed by task engagement (He 2013). Our
results indicate that there are changes in correlation structure
between resting state and goal-directed task states, although
we cannot distinguish whether these effects reflect suppressed
spontaneous activity or task-induced correlation changes.
Moreover, as noted above, elevated kurtosis does not distin-
guish between nonconstant covariance in an otherwise station-
ary normal process versus other types of deviation from
multivariate normality. However, it seems to us most likely
that the effects of alternating task state as well as sleep are
reflected primarily as changes in covariance.

Importantly, the resting state condition yielded mean kurto-
sis measures closer to the stationary null model than any of
the task-alternation conditions. This observation suggests that
the variability in correlation induced by the changes in cogni-
tive state of the magnitude imposed by standard task para-
digms does not occur during resting state BOLD runs.

BOLD Correlations Considered in Relation to Cognition

The present results suggest that the correlation structure of
resting state fMRI is very nearly constant on a timescale of
minutes, discounting the effects of drowsiness (Fig. 6). This
result may not accord with the idea that changes in cognition
might be reflected in ongoing BOLD activity. To be sure, cogni-
tive processes must be reflected in the BOLD signal. Otherwise,
task-fMRI would be impossible. Moreover, multiple studies
have demonstrated that cognitive content can be “decoded” by
analysis of BOLD fMRI data (Haxby et al. 2014; Yang et al. 2014).
However, conventional task-evoked responses are distinct from
the correlated patterns of BOLD activity under consideration
here in important ways. Conventional fMRI assumes that cog-
nitive content is reflected in the instantaneous activity profile
(a first-order statistic) of the brain (appropriately corrected for
hemodynamic delay). In contrast, functional connectivity is
defined in terms of correlation (a second-order statistic) of
BOLD signal pairs; the quantity of interest reflects how regions
of the brain relate to each other rather than to cognitive con-
tent. Thus, intuitions regarding cognition derived from a rich
history of functional neuroimaging may not apply in analyses
of functional connectivity. Rather, changes in correlation struc-
ture that we do observe may relate to distinct underlying pro-
cesses that broadly facilitate state-specific processing, for
example, in the context of different task paradigms (Friston
et al. 1997), as opposed to moment-to-moment item-level
processing.

The present results also reinforce several previously articu-
lated points concerning the robust character of spontaneous
BOLD fMRI fluctuations as viewed from multiple perspectives
(Raichle and Snyder 2007): 1) The topography of BOLD fMRI cor-
relations remains largely intact during slow-wave sleep
(Samann et al. 2011; Mitra et al. 2015b) and even anesthesia
(Mhuircheartaigh et al. 2010; Palanca et al. 2015), conditions

under which cognition is presumed to be either absent or
greatly attenuated. The relative stability observed under these
conditions is likely related to underlying constraints of anatom-
ical connectivity (Honey et al. 2009; Lu et al. 2011; Barttfeld
et al. 2015) and ongoing synaptic efficacies. 2) Task paradigms
are capable of modifying the correlation structure of spontan-
eous BOLD signal fluctuations (Fig. 6), but only to a limited
extent (Cole et al. 2014; Krienen et al. 2014). 3) Whereas uncon-
strained cognition might be expected to vary from subject to
subject and from scan to scan, RSFC is consistent across sub-
jects at the population level (Damoiseaux et al. 2006) and,
within individuals, consistent across sessions (Laumann et al.
2015).

The preceding considerations raise two questions: 1) what
physiological processes are predominantly represented in
ongoing BOLD fluctuations? and 2) why do these processes
exhibit a relatively stable correlation structure over time? To
address these questions, we invoke the principle that the brain
must allow for adaptive plasticity on the basis of new experi-
ences while simultaneously maintaining its functional archi-
tecture over extended spans of time (Turrigiano 2012). Ongoing
neural activity has been shown to contribute to the sculpting of
functionally appropriate connectivity during development
(Penn and Shatz 1999; Kirkby et al. 2013). It is likely that similar
processes persist into adulthood (Nahmani and Turrigiano
2014). Hebbian-like mechanisms are believed to underlie
experience-dependent synaptic plasticity (Lewis et al. 2009;
Schacher and Hu 2014), These mechanisms, in turn, are
balanced by homeostatic processes that adjust synaptic
weights in the wake of experience-dependent perturbations
(Marder and Goaillard 2006; Takesian and Hensch 2013;
Vitureira and Goda 2013). Although the recent literature on this
topic is largely focused on molecular mechanisms (e.g., recep-
tor trafficking, regulatory proteins, and gene expression)
(Malenka and Bear 2004; Kullmann et al. 2012), it is critical to
keep in mind that plasticity generally is governed by neural
activity and that this activity contributes to ongoing BOLD sig-
nal fluctuations. RSFC stability over timescales on the order of
minutes follows naturally if ongoing neural activity is deter-
mined primarily by the long-term configuration of the brain
rather than by recent experience. Thus, patterns of BOLD corre-
lations may both reflect current synaptic relationships as well
as serve to maintain them.

Stable RSFC is Compatible with “Dynamic” BOLD
Features and the Possibility that Ongoing BOLD Activity
Influences Behavior

It is important to note that a stable correlation structure in
resting-state BOLD is compatible with a large repertoire of
dynamic behavior and functional associations. For example,
Liu and Duyn (2013) have described a “snapshot” phenomenon,
that is, brief epochs in which the topography of particular RSNs
emerges from the ongoing activity. In a univariate normal pro-
cess, excursions exceeding ±2 SD may be expected to occur in
5% of samples. A similar principle applies to multivariate nor-
mal processes. Thus, the presence of single frame coactivation
patterns is not precluded by the results of this work.

Stationarity of BOLD correlation structure also does not pre-
clude the possibility that the instantaneous state of neural activ-
ity biases cognitive operations, perceptions, or motor behavior
(Hutchison et al. 2013a). Several studies have reported that
resting-state BOLD fMRI fluctuations bias perceptions as well as
motor behavior (Bishop 1932; Fox et al. 2007; Hesselmann et al.
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2008; Sadaghiani et al. 2010). It has been suggested that intrinsic
variability (stochastic dynamics) is advantageous because it pro-
motes exploration of the range of responses to a given circum-
stance (Deco et al. 2009). None of these considerations imply
that the second-order statistics of ongoing neural activity neces-
sarily are nonstationary. The aforementioned hypothetical fric-
tionless pendulum again provides a useful analogy. Just as the
pendulum might turn on a light at one end of its excursion, a
similar process within the brain could influence behavior.
Furthermore, just as an applied external force might cause the
motion of the pendulum to be nonstationary, environmental
events may generate neural responses. Such responses are, by
definition, not “resting state.”

Propagation Analysis Provides a Means of Studying
Time-Dependent Properties of Ongoing BOLD Activity

The present results suggest that the correlation structure of
resting state BOLD activity is essentially stable over tens of sec-
onds. However, the stability of BOLD signal correlations, which
are computed by integrating over time, does not speak to the
time-dependent properties of BOLD data as described by ana-
lyses of structured signal propagation at shorter timescales.
Indeed, Mitra and colleagues have recently reported that rest-
ing state BOLD signals are characterized by propagating spatio-
temporal sequences that play out on a timescale of ±1 s (Mitra
et al. 2014, 2015a). Propagation is inferred on the basis of tem-
poral lags in BOLD signals between pairs of regions across the
whole-brain (Mitra et al. 2014). This temporal lag structure is
highly reproducible over large groups of subjects studied in the
awake resting state (Mitra et al. 2015a). Importantly, the lag
structure is sensitive to changes in eye state (open or closed),
recent history of task performance, time of day, and, most dra-
matically, to slow-wave sleep as compared with wake (Mitra
et al. 2014, 2015b). Furthermore, on comparing adults with aut-
ism spectrum disorder to age-matched controls, conventional
RSFC measures showed no differences while clear abnormal-
ities were observed in lag structure (Mitra et al. 2017). In the
present context, it should be noted that propagating spatio-
temporal processes are consistent with stationarity, so long as
propagation patterns are stable within state.

Future Directions and Conclusion

The present analyses do not prove that resting state BOLD data
are devoid of nonstationary features. Firstly, this is because the
kurtosis assesses multivariate normality rather than stationar-
ity per se. But beyond this limitation, there remains a small
excess of kurtosis compared with simulated data evident in
Figure 5 that is not readily attributable to head motion or fluc-
tuating drowsiness. Potential sources of this excess kurtosis
include the inability to completely eliminate the effects of head
motion (Fig. 4C), underestimated sleep effects (Tagliazucchi
et al. 2012c), fluctuating arousal (Chang et al. 2016), “uncon-
strained cognition,” or as yet unidentified factors. However, the
unaccounted for excess of kurtosis is small relative to that
accounted for by identified explanatory factors. Therefore, we
suggest that any evaluation of these other possible explanatory
factors of variability in RSFC over time should carefully account
for sampling variability and known sources of nonstationarity
(e.g., head motion and sleep state). Future investigations may
identify physiologically meaningful contributors to correlation
variability. However, the present observations suggest that cor-
relations in infra-slow brain activity, at least as measured by

resting-state BOLD, are relatively stable over short timescales,
pointing to a role for these relationships that may be largely
distinct from moment-to-moment cognitive processing.
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